4 research outputs found

    Superfluidity within Exact Renormalisation Group approach

    Full text link
    The application of the exact renormalisation group to a many-fermion system with a short-range attractive force is studied. We assume a simple ansatz for the effective action with effective bosons, describing pairing effects and derive a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator was shown to lead to similar results.Comment: 17 pages, 3 figures, to appear in the proceedings of Renormalization Group 2005 (RG 2005), Helsinki, Finland, 30 Aug - 3 Sep 200

    A nonequilibrium renormalization group approach to turbulent reheating

    Get PDF
    We use nonequilibrium renormalization group (RG) techniques to analyze the thermalization process in quantum field theory, and by extension reheating after inflation. Even if at a high scale Λ\Lambda the theory is described by a non-dissipative λϕ4\lambda\phi^{4} theory, the RG running induces nontrivial noise and dissipation. For long wavelength, slowly varying field configurations, the noise and dissipation are white and ohmic, respectively. The theory will then tend to thermalize to an effective temperature given by the fluctuation-dissipation theorem.Comment: 8 pages, 2 figures; to appear in J. Phys. A; more detailed account of the calculation of the noise and dissipation kernel

    Wilson-Polchinski exact renormalization group equation for O(N) systems: Leading and next-to-leading orders in the derivative expansion

    Full text link
    With a view to study the convergence properties of the derivative expansion of the exact renormalization group (RG) equation, I explicitly study the leading and next-to-leading orders of this expansion applied to the Wilson-Polchinski equation in the case of the NN-vector model with the symmetry O(N)\mathrm{O}(N) . As a test, the critical exponents % \eta and ν\nu as well as the subcritical exponent ω\omega (and higher ones) are estimated in three dimensions for values of NN ranging from 1 to 20. I compare the results with the corresponding estimates obtained in preceding studies or treatments of other O(N)\mathrm{O}(N) exact RG equations at second order. The possibility of varying NN allows to size up the derivative expansion method. The values obtained from the resummation of high orders of perturbative field theory are used as standards to illustrate the eventual convergence in each case. A peculiar attention is drawn on the preservation (or not) of the reparametrisation invariance.Comment: Dedicated to Lothar Sch\"afer on the occasion of his 60th birthday. Final versio
    corecore