50 research outputs found

    Twins in rotational spectroscopy: Does a rotational spectrum uniquely identify a molecule?

    Full text link
    Rotational spectroscopy is the most accurate method for determining structures of molecules in the gas phase. It is often assumed that a rotational spectrum is a unique "fingerprint" of a molecule. The availability of large molecular databases and the development of artificial intelligence methods for spectroscopy makes the testing of this assumption timely. In this paper, we pose the determination of molecular structures from rotational spectra as an inverse problem. Within this framework, we adopt a funnel-based approach to search for molecular twins, which are two or more molecules, which have similar rotational spectra but distinctly different molecular structures. We demonstrate that there are twins within standard levels of computational accuracy by generating rotational constants for many molecules from several large molecular databases, indicating the inverse problem is ill-posed. However, some twins can be distinguished by increasing the accuracy of the theoretical methods or by performing additional experiments

    Globus Data Publication as a Service: Lowering Barriers to Reproducible Science

    Get PDF
    Abstract-Broad access to the data on which scientific results are based is essential for verification, reproducibility, and extension. Scholarly publication has long been the means to this end. But as data volumes grow, new methods beyond traditional publications are needed for communicating, discovering, and accessing scientific data. We describe data publication capabilities within the Globus research data management service, which supports publication of large datasets, with customizable policies for different institutions and researchers; the ability to publish data directly from both locally owned storage and cloud storage; extensible metadata that can be customized to describe specific attributes of different research domains; flexible publication and curation workflows that can be easily tailored to meet institutional requirements; and public and restricted collections that give complete control over who may access published data. We describe the architecture and implementation of these new capabilities and review early results from pilot projects involving nine research communities that span a range of data sizes, data types, disciplines, and publication policies
    corecore