2,472 research outputs found

    A superconducting qubit with Purcell protection and tunable coupling

    Full text link
    We present a superconducting qubit for the circuit quantum electrodynamics architecture that has a tunable coupling strength g. We show that this coupling strength can be tuned from zero to values that are comparable with other superconducting qubits. At g = 0 the qubit is in a decoherence free subspace with respect to spontaneous emission induced by the Purcell effect. Furthermore we show that in the decoherence free subspace the state of the qubit can still be measured by either a dispersive shift on the resonance frequency of the resonator or by a cycling-type measurement.Comment: 4 pages, 3 figure

    Signatures of Hong-Ou-Mandel Interference at Microwave Frequencies

    Full text link
    Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, was recently demonstrated with \emph{microwave-frequency} photons by Lang \emph{et al.}\,\cite{lang:microwaveHOM}. This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of \emph{pulsed} Gaussian or Lorentzian single microwave photons, and (ii) resonant fluorescent microwave fields from \emph{continuously-driven} circuit QED systems. The calculations include the effects of the finite bandwidth of the detection scheme. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Ref. \onlinecite{lang:microwaveHOM} was performed with trains of \emph{Lorentzian} single photons, and very good agreement between the calculations and the experimental data was obtained.Comment: 11 pages, 3 figure

    Improved qubit bifurcation readout in the straddling regime of circuit QED

    Full text link
    We study bifurcation measurement of a multi-level superconducting qubit using a nonlinear resonator biased in the straddling regime, where the resonator frequency sits between two qubit transition frequencies. We find that high-fidelity bifurcation measurements are possible because of the enhanced qubit-state-dependent pull of the resonator frequency, the behavior of qubit-induced nonlinearities and the reduced Purcell decay rate of the qubit that can be realized in this regime. Numerical simulations find up to a threefold improvement in qubit readout fidelity when operating in, rather than outside of, the straddling regime. High-fidelity measurements can be obtained at much smaller qubit-resonator couplings than current typical experimental realizations, reducing spectral crowding and potentially simplifying the implementation of multi-qubit devices.Comment: 9 pages, 6 figure

    Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout

    Full text link
    In a Rabi oscillation experiment with a superconducting qubit we show that a visibility in the qubit excited state population of more than 90 % can be attained. We perform a dispersive measurement of the qubit state by coupling the qubit non-resonantly to a transmission line resonator and probing the resonator transmission spectrum. The measurement process is well characterized and quantitatively understood. The qubit coherence time is determined to be larger than 500 ns in a measurement of Ramsey fringes.Comment: 4 pages, 5 figures, version with high resolution figures available at http://www.eng.yale.edu/rslab/Andreas/content/science/PubsPapers.htm

    Protocol for universal gates in optimally biased superconducting qubits

    Full text link
    We present a new experimental protocol for performing universal gates in a register of superconducting qubits coupled by fixed on-chip linear reactances. The qubits have fixed, detuned Larmor frequencies and can remain, during the entire gate operation, biased at their optimal working point where decoherence due to fluctuations in control parameters is suppressed to first order. Two-qubit gates are performed by simultaneously irradiating two qubits at their respective Larmor frequencies with appropriate amplitude and phase, while one-qubit gates are performed by the usual single-qubit irradiation pulses
    corecore