4 research outputs found

    Broad-scale lake expansion and flooding inundates essential wood bison habitat

    Get PDF
    Understanding the interaction between the response of a complex ecosystem to climate change and the protection of vulnerable wildlife species is essential for conservation efforts. In the Northwest Territories (Canada), the recent movement of the Mackenzie wood bison herd (Bison bison athabascae) out of their designated territory has been postulated as a response to the loss of essential habitat following regional lake expansion. We show that the proportion of this landscape occupied by water doubled since 1986 and the timing of lake expansion corresponds to bison movements out of the Mackenzie Bison Sanctuary. Historical reconstructions using proxy data in dated sediment cores show that the scale of recent lake expansion is unmatched over at least the last several hundred years. We conclude that recent lake expansion represents a fundamental alteration of the structure and function of this ecosystem and its use by Mackenzie wood bison, in response to climate change

    Controls governing the spatial distribution of sediment arsenic concentrations and solid-phase speciation in a lake impacted by legacy mining pollution

    No full text
    Forty-seven sediment cores were collected as part of a spatial survey of Long Lake, Yellowknife, NWT, Canada to elucidate the physical and geochemical controls on the distribution of arsenic (As) in sediments impacted by the aerial deposition of arsenic trioxide (As2O3) from ore roasting at legacy gold mines. High-resolution profiles of dissolved As in bottom water and porewater were also collected to determine As remobilization and diffusion rates across the sediment-water interface. Arsenic concentrations in Long Lake sediments ranged from 2.2 to 3420 mg kg−1 (dry weight). Two distinct types of sediment As concentration profiles were identified and are interpreted to represent erosional and depositional areas. Water depth is the best predictor of As concentration in the top 5 cm of sediments due to the inferred focusing of fine-grained As2O3 into deeper water. At greater sediment depths, iron (Fe) concentration, as a likely indicator of As, Fe, and sulphur (S) co-diagenesis, was the best predictor of As concentration. The sediments are a source of dissolved As to surface waters through diffusion-controlled release to bottom water. Arsenic concentrations, solid-phase speciation, and diffusive efflux varied laterally across the lake bottom and with sediment depth due to the interplay between sediment-focusing processes and redox reactions, which has implications for human health and ecological risk assessments

    Multicentury perspective assessing the sustainability of the historical harvest of seaducks

    No full text
    Where available, census data on seabirds often do not extend beyond a few years or decades, challenging our ability to identify drivers of population change and to develop conservation policies. Here, we reconstruct long-term population dynamics of northern common eiders (Somateria mollissima borealis). We analyzed sterols together with stable nitrogen isotopes in dated pond sediment cores to show that eiders underwent broadscale population declines over the 20th century at Canadian subarctic breeding sites. Likely, a rapidly growing Greenland population, combined with relocation of Inuit to larger Arctic communities and associated increases in the availability of firearms and motors during the early to mid-20th century, generated more efficient hunting practices, which in turn reduced the number of adult eiders breeding at Canadian nesting islands. Our paleolimnological approach highlights that current and local monitoring windows for many sensitive seabird species may be inadequate for making key conservation decisions
    corecore