1,061 research outputs found

    The temperatures of dust-enshrouded AGNs

    Get PDF
    A high density of massive dark objects (MDOs), probably supermassive black holes, in the centres of nearby galaxies has been inferred from recent observations. There are various indications that much of the accretion responsible for producing these objects took place in dust-enshrouded active galactic nuclei (AGNs). If so, then measurements of the intensity of background radiation and the source counts in the far-infrared and submillimetre wavebands constrain the temperature of dust in these AGNs. An additional constraint comes from the hard X-ray background, if this is produced by accretion. One possibility is that the dust shrouds surrounding the accreting AGNs are cold, about 30 K. In this event, the dusty AGNs could be some subset of the population of luminous distant sources discovered at 850 microns using the SCUBA array on the JCMT, as proposed by Almaini et al. (1999). An alternative is that the dust shrouds surrounding the accreting AGNs are much hotter (> 60 K). These values are closer to the dust temperatures of a number of well-studied low-redshift ultraluminous galaxies that are thought to derive their power from accretion. If the local MDO density is close to the maximum permitted, then cold sources cannot produce this density without the submillimetre background being overproduced if they accrete at high radiative efficiency, and thus a hot population is required. If the dust-enshrouded accretion occurred at similar redshifts to that taking place in unobscured optical quasars, then a significant fraction of the far-infrared background radiation measured by COBE at 140 microns, but very little of the submilllimetre background at 850 microns, may have been produced by hot dust-enshrouded AGNs which may have already been seen in recent X-ray surveys.Comment: MNRAS in pres

    Far-infrared constraints on the contamination by dust-obscured galaxies of high-z dropout searches

    Get PDF
    The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high-redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high-redshift galaxy searches based on broad-band optical/NIR photometry by lower redshift dusty galaxies because both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. This work shows how the far-infrared (FIR) domain can help to recognize likely low-z interlopers in an optical/NIR search for high-z galaxies. We analyze the FIR SEDs of two galaxies that are proposed to be very high-redshift (z > 7) dropout candidates based on deep Hawk-I/VLT observations. The FIR SEDs are sampled with PACS/Herschel at 100 and 160 Όm, with SPIRE/Herschel at 250, 350 and 500 Όm and with LABOCA/APEX at 870 Όm. We find that redshifts > 7 would imply extreme FIR SEDs (with dust temperatures >100 K and FIR luminosities >10^(13) L_⊙). At z ~ 2, instead, the SEDs of both sources would be compatible with those of typical ultra luminous infrared galaxies or submillimeter galaxies. Considering all available data for these sources from visible to FIR we re-estimate the redshifts and find z ~ 1.6–2.5. Owing to the strong spectral breaks observed in these galaxies, standard templates from the literature fail to reproduce the visible-to-near-IR part of the SEDs even when additional extinction is included. These sources strongly resemble dust-obscured galaxies selected in Spitzer observations with extreme visible-to-FIR colors, and the galaxy GN10 at z = 4. Galaxies with similar SEDs could contaminate other high-redshift surveys

    Herschel ATLAS: The cosmic star formation history of quasar host galaxies

    Get PDF
    We present a derivation of the star formation rate per comoving volume of quasar host galaxies, derived from stacking analyses of far-infrared to mm-wave photometry of quasars with redshifts 0 I_(AB) > -32 We use the science demonstration observations of the first ~16 deg^2 from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) in which there are 240 quasars from the Sloan Digital Sky Survey (SDSS) and a further 171 from the 2dF-SDSS LRG and QSO (2SLAQ) survey. We supplement this data with a compilation of data from IRAS, ISO, Spitzer, SCUBA and MAMBO. H-ATLAS alone statistically detects the quasars in its survey area at >5σ at 250,350 and 500 Όm. From the compilation as a whole we find striking evidence of downsizing in quasar host galaxy formation: low-luminosity quasars with absolute magnitudes in the range -22 > I_(AB) > -24 have a comoving star formation rate (derived from 100 Όm rest-frame luminosities) peaking between redshifts of 1 and 2, while high-luminosity quasars with I_(AB) I_(AB) > -24 quasars evolves as (1 + z)^(2.3±0.7) at z I_(AB) > -28. We tentatively interpret this as a combination of a declining major merger rate with time and gas consumption reducing fuel for both black hole accretion and star formation

    Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3

    Get PDF
    We present a detailed analysis of the far-infrared (-IR) properties of the bright, lensed, z = 2.3, submillimetre-selected galaxy (SMG), SMM J2135-0102 (hereafter SMM J2135), using new observations with Herschel, SCUBA-2 and the Very Large Array (VLA). These data allow us to constrain the galaxy's spectral energy distribution (SED) and show that it has an intrinsic rest-frame 8-1000-ÎŒm luminosity, L_(bol), of (2.3±0.2) × 10^(12) L_☉ and a likely star-formation rate (SFR) of ~400 yr-1. The galaxy sits on the far-IR/radio correlation for far-IR-selected galaxies. At ≳70 ÎŒm, the SED can be described adequately by dust components with dust temperatures, T_d ~ 30 and 60 k. Using SPIRE's Fourier- transform spectrometer (FTS) we report a detection of the [C ii] 158 ÎŒm cooling line. If the [C ii], CO and far-IR continuum arise in photo-dissociation regions (PDRs), we derive a characteristic gas density, n ~ 10^3 cm^(-3), and a far-ultraviolet (-UV) radiation field, G_0, 10^(3)× stronger than the Milky Way. L_[CII]/L_(bol) is significantly higher than in local ultra-luminous IR galaxies (ULIRGs) but similar to the values found in local star-forming galaxies and starburst nuclei. This is consistent with SMM J2135 being powered by starburst clumps distributed across ~2 kpc, evidence that SMGs are not simply scaled-up ULIRGs. Our results show that SPIRE's FTS has the ability to measure the redshifts of distant, obscured galaxies via the blind detection of atomic cooling lines, but it will not be competitive with ground-based CO-line searches. It will, however, allow detailed study of the integrated properties of high-redshift galaxies, as well as the chemistry of their interstellar medium (ISM), once more suitably bright candidates have been found

    Detecting gravitational lensing cosmic shear from samples of several galaxies using two-dimensional spectral imaging

    Get PDF
    Studies of weak gravitational lensing by large-scale structures require the measurement of the distortions introduced to the shapes of distant galaxies at the few percent level by anisotropic light deflection along the line of sight. To detect this signal on 1-10 arcmin scales in a particular field, accurate measurements of the correlations between the shapes of order 1000-10000 galaxies are required. This large-scale averaging is required to accommodate the unknown intrinsic shapes of the background galaxies, even with careful removal of systematic effects. Here an alternative is discussed. If it is possible to measure accurately the detailed dynamical structure of the background galaxies, in particular rotating disks, then it should be possible to measure directly the cosmic shear distortion, as it generally leads to a non-self-consistent rotation curve. Narrow spectral lines and excellent two-dimensional spatial resolution are required. The ideal lines and telescope are CO rotational transitions and the Atacama Large Millimeter Array (ALMA) respectively.Comment: 12 pages, 4 figures, Expected to appear in ApJ Letters Vol. 570, 10 May 2002. Replaced with final proof version correcting minor typo
    • 

    corecore