3 research outputs found

    The Last Trees Standing: Climate modulates tree survival factors during a prolonged bark beetle outbreak in Europe

    Get PDF
    Plant traits are an expression of strategic tradeoffs in plant performance that determine variation in allocation of finite resources to alternate physiological functions. Climate factors interact with plant traits to mediate tree survival. This study investigated survival dynamics in Norway spruce (Picea abies) in relation to tree-level morphological traits during a prolonged multi-year outbreak of the bark beetle, Ips typographus, in Central Europe. We acquired datasets describing the trait attributes of individual spruce using remote sensing and field surveys. We used nonlinear regression in a hypothesis-driven framework to quantify survival probability as a function of tree size, crown morphology, intraspecific competition and a growing season water balance. Extant spruce trees that persisted through the outbreak were spatially clustered, suggesting that survival was a nonrandom process. Larger diameter trees were more susceptible to bark beetles, reflecting either life history tradeoffs or a dynamic interaction between defense capacity and insect aggregation behavior. Competition had a strong negative effect on survival, presumably through resource limitation. Trees with more extensive crowns were buffered against bark beetles, ostensibly by a more robust photosynthetic capability and greater carbon reserves. The outbreak spanned a warming trend and conditions of anomalous aridity. Sustained water limitation during this period amplified the consequences of other factors, rendering even smaller trees vulnerable to colonization by insects. Our results are in agreement with prior research indicating that climate change has the potential to intensify bark beetle activity. However, forest outcomes will depend on complex cross-scale interactions between global climate trends and tree-level trait factors, as well as feedback effects associated with landscape patterns of stand structural diversity

    Clinical Evaluation of Subcutaneous Lactate Measurement in Patients after Major Cardiac Surgery

    Get PDF
    Minimally invasive techniques to access subcutaneous adipose tissue for glucose monitoring are successfully applied in type1 diabetic and critically ill patients. During critical illness, the addition of a lactate sensor might enhance prognosis and early intervention. Our objective was to evaluate SAT as a site for lactate measurement in critically ill patients. In 40 patients after major cardiac surgery, arterial blood and SAT microdialysis samples were taken in hourly intervals. Lactate concentrations from SAT were prospectively calibrated to arterial blood. Analysis was based on comparison of absolute lactate concentrations (arterial blood vs. SAT) and on a 6-hour lactate trend analysis, to test whether changes of arterial lactate can be described by SAT lactate. Correlation between lactate readings from arterial blood vs. SAT was highly significant (r2 = 0.71, P < .001). Nevertheless, 42% of SAT lactate readings and 35% of the SAT lactate trends were not comparable to arterial blood. When a 6-hour stabilization period after catheter insertion was introduced, 5.5% of SAT readings and 41.6% of the SAT lactate trends remained incomparable to arterial blood. In conclusion, replacement of arterial blood lactate measurements by readings from SAT is associated with a substantial shortcoming in clinical predictability in patients after major cardiac surgery
    corecore