23 research outputs found

    Real-time PCR of the mammalian hydroxymethylbilane synthase (HMBS) gene for analysis of flea (Ctenocephalides felis) feeding patterns on dogs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Precise data on quantitative kinetics of blood feeding of fleas, particularly immediately after contact with the host, are essential for understanding dynamics of flea-borne disease transmission and for evaluating flea control strategies. Standard methods used are inadequate for studies that simulate early events after real-life flea access to the host.</p> <p>Methods</p> <p>Here, we developed a novel quantitative polymerase chain reaction targeting mammalian DNA within fleas to quantify blood consumption with high sensitivity and specificity. We used primers and fluorescent probes that amplify the hydroxymethylbilane synthase (HMBS) gene, an evolutionary divergent gene that is unlikely to be detected in insects by mammalian-specific primers and probes. To validate this assay, fleas were placed on dogs, allowed to distribute in the hair, and removed at specific time points with single-use combs. Fleas were then immediately homogenized by vigorous shaking with ceramic beads in guanidinium-based DNA preservation buffer for DNA extraction.</p> <p>Results</p> <p>The specificity of this assay was ascertained by amplification of canine, feline and equine blood with differential product melting temperatures (<it>T</it><sub>m</sub>), and lack of amplification of bovine and porcine blood and of adult fleas reared from larvae fed with bovine blood. Sensitivity of the assay was established by limiting dilution and detection of single copies of HMBS DNA equivalent to 0.043 nL blood. Application of the assay indicated that after 15 minutes on a dog, male and female fleas had ingested low, but similar amounts of approximately 1.1. nL blood. Saturation uptake of 118 and 100 nL blood per flea was found at 30 and 60 min on the dog, respectively.</p> <p>Conclusions</p> <p>The HMBS PCR method developed here offers the advantages of both exquisite sensitivity and specificity that make it superior to other approaches for quantification of blood ingested by fleas. The capability to detect minute quantities of blood in single fleas, particularly immediately after colonization of the host, will provide a superior tool for studying flea-host interactions, flea-borne disease transmission, and flea control strategies.</p

    Quantitative Factors Proposed to Influence the Prevalence of Canine Tick-Bourne Disease Agents in the United States

    Get PDF
    The Companion Animal Parasite Council hosted a meeting to identify quantifiable factors that can influence the prevalence of tick-borne disease agents among dogs in North America. This report summarizes the approach used and the factors identified for further analysis with mathematical models of canine exposure to tick-borne pathogens

    Quantitative Factors Proposed to Influence the Prevalence of Canine Tick-Borne Disease Agents in the United States

    Get PDF
    The Companion Animal Parasite Council hosted a meeting to identify quantifiable factors that can influence the prevalence of tick-borne disease agents among dogs in North America. This report summarizes the approach used and the factors identified for further analysis with mathematical models of canine exposure to tick-borne pathogens

    Comparative evaluation of commercially available point-of-care heartworm antigen tests using well-characterized canine plasma samples

    No full text
    Abstract Background Dirofilaria immitis is a worldwide parasite that is endemic in many parts of the United States. There are many commercial assays available for the detection of D. immitis antigen, one of which was modified and has reentered the market. Our objective was to compare the recently reintroduced Witness® Heartworm (HW) Antigen test Kit (Zoetis, Florham Park, NJ) and the SNAP® Heartworm RT (IDEXX Laboratories, Inc., Westbrook, ME) to the well-based ELISA DiroChek® Heartworm Antigen Test Kit (Zoetis, Florham Park, NJ). Methods Canine plasma samples were either received at the Auburn Diagnostic Parasitology Laboratory from veterinarians submitting samples for additional heartworm testing (n = 100) from 2008 to 2016 or purchased from purpose-bred beagles (n = 50, presumed negative) in 2016. Samples were categorized as “positive,” “borderline” or “negative” using our established spectrophotometric cutoff value with the DiroChek® assay when a sample was initially received and processed. Three commercially available heartworm antigen tests (DiroChek®, Witness® HW, and SNAP® RT) were utilized for simultaneous testing of the 150 samples in random order as per their package insert with the addition of spectrophotometric optical density (OD) readings of the DiroChek® assay. Any samples yielding discordant test results between assays were further evaluated by heat treatment of plasma and retesting. Chi-square tests for the equality of proportions were utilized for statistical analyses. Results Concordant results occurred in 140/150 (93.3%) samples. Discrepant results occurred in 10/150 samples tested (6.6%): 9/10 occurring in the borderline heartworm (HW) category and 1/10 occurring in the negative HW category. The sensitivity and specificity of each test compared to the DiroChek® read by spectrophotometer was similar to what has been reported previously (Witness®: sensitivity 97.0% [94.1–99.4%], specificity 96.4% [95.5–100.0%]; SNAP® RT: sensitivity 90.9% [78.0–100.0%], specificity 98.8% [96.0–100.0%]). There were significant differences detected when comparing the sensitivities of the SNAP® RT and the Witness® HW to the DiroChek® among the 150 total samples (p = 0.003) and the 50 “borderline” samples (p = 0.001). Conclusions In this study, the sensitivity of the Witness® HW was higher than the sensitivity of the SNAP® RT when compared with the DiroChek® test results prior to heat treatment of samples

    Heartworm-associated respiratory disease (HARD) induced by immature adult Dirofilaria immitis in cats

    No full text
    Abstract Background A controlled, blind research study was conducted to define the initial inflammatory response and lung damage associated with the death of immature adult Dirofilaria immitis in cats as compared with cats developing adult heartworm infections and cats on preventive medication. Methods Three groups of cats were utilized, 10 per group. All cats were infected with 100 third-stage (L3) larvae by subcutaneous injection. Group A cats were treated topically with selamectin (Revolution®; Zoetis) per label directions at 28 days post infection (PI) and once monthly for 8 months. Group B cats were treated orally with ivermectin (Ivomec®; Merial) at 150 μg/kg at 70 days PI, then every 2 weeks for 5 months. Group C cats were untreated PI. At baseline (Day 0) and on Days 70, 110, 168, and 240 PI, peripheral blood, serum, bronchial lavage, and thoracic radiographic images were collected on all cats. Upon completion of the study (Day 245), cats were euthanized and necropsies were conducted. Results Results were analyzed statistically between groups by ANOVA and by paired sample T testing for changes within the group over time. The selamectin-treated cats (Group A) did not develop radiographically evident changes throughout the study and were free of adult heartworms or worm fragments at necropsy. The heartworm life cycle was abbreviated with oral doses of ivermectin (Group B), shown by the absence of adult heartworms or worm fragments at necropsy. The early stage of immature adult worm in Group B cats, however, did induce severe pulmonary airway, interstitial, and arterial lung lesions, revealing that the abbreviated infection is a significant cause of respiratory pathology in cats. Cats in Groups B and C could not be differentiated based on radiographic changes, serologic antibody titers, complete blood count, or bronchoalveolar lavage cytology at any time point throughout the study. Eighty percent of cats in Group A and 100% of cats in Groups B and C became heartworm antibody positive at some time point post infection. Conclusions The clinical implications of this study are that cats that become infected with immature adult heartworms may not develop fully mature heartworms and are only transiently heartworm antibody positive, but do develop Heartworm-Associated Respiratory Disease (HARD)

    Cytokine Gene Expression in Response to SnSAG1 in Horses with Equine Protozoal Myeloencephalitis

    No full text
    Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome seen in horses from the Americas and is mainly caused by Sarcocystis neurona. Recently, a 29-kDa surface antigen from S. neurona merozoites was identified as being highly immunodominant on a Western blot. This antigen has been sequenced and cloned, and the expressed protein has been named SnSAG1. In a previous study, cell-mediated immune responses to SnSAG1 were shown to be statistically significantly reduced in horses with EPM in comparison to EPM-negative control horses. It therefore appears as though the parasite is able to induce immunosuppression towards parasite-derived antigens as parasite-specific responses are decreased. Isolated peripheral blood lymphocytes from 21 EPM (cerebrospinal fluid [CSF] Western blot)-negative horses with no clinical signs and 21 horses with clinical signs of EPM (CSF Western blot positive) were cocultured with SnSAG1 for 48 and 72 h, and the effect on cytokine production was investigated by means of reverse transcriptase PCR. Cytokines assayed include gamma interferon (IFN-γ), tumor necrosis factor alpha, interleukin (IL)-2, IL-4, and IL-6. β-Actin was used as the housekeeping gene. A Wilcoxon signed-rank test of the findings indicated that there was a statistically significant decrease in IFN-γ production after 48 h in culture for samples from horses with clinical disease. There was also a statistically significant increase in IL-4 production after 72 h in culture for samples from horses with EPM. These results further support the notion that this parasite is able to subvert the immune system in horses with clinical disease
    corecore