153 research outputs found

    Exploring wind-driving dust species in cool luminous giants III. Wind models for M-type AGB stars: dynamic and photometric properties

    Full text link
    Stellar winds observed in asymptotic giant branch (AGB) stars are usually attributed to a combination of stellar pulsations and radiation pressure on dust. Shock waves triggered by pulsations propagate through the atmosphere, compressing the gas and lifting it to cooler regions, which create favourable conditions for grain growth. If sufficient radiative acceleration is exerted on the newly formed grains through absorption or scattering of stellar photons, an outflow can be triggered. Strong candidates for wind-driving dust species in M-type AGB stars are magnesium silicates (Mg2_2SiO4_4 and MgSiO3_3). Such grains can form close to the stellar surface, they consist of abundant materials and, if they grow to sizes comparable to the wavelength of the stellar flux maximum, they experience strong acceleration by photon scattering. We use a frequency-dependent radiation-hydrodynamics code with a detailed description for the growth of Mg2_2SiO4_4 grains to calculate the first extensive set of time-dependent wind models for M-type AGB stars. The resulting wind properties, visual and near-IR photometry and mid-IR spectra are compared with observations.We show that the models can produce outflows for a wide range of stellar parameters. We also demonstrate that they reproduce observed mass-loss rates and wind velocities, as well as visual and near-IR photometry. However, the current models do not show the characteristic silicate features at 10 and 18 μ\mum as a result of the cool temperature of Mg2_2SiO4_4 grains in the wind. Including a small amount of Fe in the grains further out in the circumstellar envelope will increase the grain temperature and result in pronounced silicate features, without significantly affecting the photometry in the visual and near-IR wavelength regions.Comment: 11 pages, 14 figure

    Exploring wind-driving dust species in cool luminous giants II. Constraints from photometry of M-type AGB stars

    Full text link
    The heavy mass loss observed in evolved asymptotic giant branch (AGB) stars is usually attributed to a two-stage process: atmospheric levitation by pulsation-induced shock waves, followed by radiative acceleration of newly formed dust grains. The dust transfers momentum to the surrounding gas through collisions and thereby triggers a general outflow. Radiation-hydrodynamical models of M-type AGB stars suggest that these winds can be driven by photon scattering -- in contrast to absorption -- on Fe-free silicate grains of sizes 0.1--1\,μ\mum. In this paper we study photometric constraints for wind-driving dust species in M-type AGB stars, as part of an ongoing effort to identify likely candidates among the grain materials observed in circumstellar envelopes. To investigate the scenario of stellar winds driven by photon scattering on dust, and to explore how different optical and chemical properties of wind-driving dust species affect photometry we focus on two sets of dynamical models atmospheres: (i) models using a detailed description for the growth of Mg2_2SiO4_4 grains, taking into account both scattering and absorption cross-sections when calculating the radiative acceleration, and (ii) models using a parameterized dust description, constructed to represent different chemical and optical dust properties. By comparing synthetic photometry from these two sets of models to observations of M-type AGB stars we can provide constraints on the properties of wind-driving dust species. Photometry from wind models with a detailed description for the growth of Mg2_2SiO4_4 grains reproduces well both the values and the time-dependent behavior of observations of M-type AGB stars, providing further support for the scenario of winds driven by photon scattering on dust.Comment: Accepted for publication in A&A. 15 pages, 14 figure

    Coherent dynamics of a Josephson charge qubit

    Get PDF
    We have fabricated a Josephson charge qubit by capacitively coupling a single-Cooper-pair box (SCB) to an electrometer based upon a single-electron transistor configured for radio-frequency readout (RF-SET). Charge quantization of 2e is observed and microwave spectroscopy is used to extract the Josephson and charging energies of the box. We perform coherent manipulation of the SCB by using very fast DC pulses and observe quantum oscillations in time of the charge that persist to ~=10ns. The observed contrast of the oscillations is high and agrees with that expected from the finite E_J/E_C ratio and finite rise-time of the DC pulses. In addition, we are able to demonstrate nearly 100% initial charge state polarization. We also present a method to determine the relaxation time T_1 when it is shorter than the measurement time T_{meas}.Comment: accepted for publication in Phys. Rev.

    Tunability of a 2e periodic single Cooper pair box

    Get PDF
    We have measured the fully 2e periodic Coulomb staircase of a single Cooper pair box (SCB) in superconducting quantum interference design geometry, using a radio-frequency single-electron transistor. We have determined the energies of the SCB with microwave spectroscopy and compared the calculated shape of the Coulomb staircases to the measured staircases. We find excellent agreement as the Josephson coupling energy is tuned by an external magnetic field

    Radio-frequency operation of a double-island single-electron transistor

    Full text link
    We present results on a double-island single-electron transistor (DISET) operated at radio-frequency (rf) for fast and highly sensitive detection of charge motion in the solid state. Using an intuitive definition for the charge sensitivity, we compare a DISET to a conventional single-electron transistor (SET). We find that a DISET can be more sensitive than a SET for identical, minimum device resistances in the Coulomb blockade regime. This is of particular importance for rf operation where ideal impedance matching to 50 Ohm transmission lines is only possible for a limited range of device resistances. We report a charge sensitivity of 5.6E-6 e/sqrt(Hz) for a rf-DISET, together with a demonstration of single-shot detection of small (<=0.1e) charge signals on microsecond timescales.Comment: 6 pages, 6 figure

    Observation of quantum capacitance in the Cooper-pair transistor

    Get PDF
    We have fabricated a Cooper-pair transistor (CPT) with parameters such that for appropriate voltage biases, the sub-gap charge transport takes place via slow tunneling of quasiparticles that link two Josephson-coupled charge manifolds. In between the quasiparticle tunneling events, the CPT behaves essentially like a single Cooper-pair box (SCB). The effective capacitance of a SCB can be defined as the derivative of the induced charge with respect to gate voltage. This capacitance has two parts, the geometric capacitance, C_geom, and the quantum capacitance C_Q. The latter is due to the level anti-crossing caused by the Josephson coupling. It depends parametrically on the gate voltage and is dual to the Josephson inductance. Furthermore, it's magnitude may be substantially larger than C_geom. We have been able to detect C_Q in our CPT, by measuring the in-phase and quadrature rf-signal reflected from a resonant circuit in which the CPT is embedded. C_Q can be used as the basis of a charge qubit readout by placing a Cooper-pair box in such a resonant circuit.Comment: 3 figure

    Josephson charge-phase qubit with radio frequency readout: coupling and decoherence

    Full text link
    The charge-phase Josephson qubit based on a superconducting single charge transistor inserted in a low-inductance superconducting loop is considered. The loop is inductively coupled to a radio-frequency driven tank circuit enabling the readout of the qubit states by measuring the effective Josephson inductance of the transistor. The effect of qubit dephasing and relaxation due to electric and magnetic control lines as well as the measuring system is evaluated. Recommendations for operation of the qubit in magic points producing minimum decoherence are given.Comment: 11 pages incl. 6 fig

    Multiple Current States of Two Phase-Coupled Superconducting Rings

    Full text link
    The states of two phase-coupled superconducting rings have been investigated. Multiple current states have been revealed in the dependence of the critical current on the magnetic field. The performed calculations of the critical currents and energy states in a magnetic field have made it possible to interpret the experiment as the measurement of energy states into which the system comes with different probabilities because of the equilibrium and non-equilibrium noises upon the transition from the resistive state to the superconducting state during the measurement of the critical currentComment: 5 pages, 5 figure
    • …
    corecore