96 research outputs found
Evaluating the Ability of Large Language Models to Reason about Cardinal Directions
We investigate the abilities of a representative set of Large language Models (LLMs) to reason about cardinal directions (CDs). To do so, we create two datasets: the first, co-created with ChatGPT, focuses largely on recall of world knowledge about CDs; the second is generated from a set of templates, comprehensively testing an LLM's ability to determine the correct CD given a particular scenario. The templates allow for a number of degrees of variation such as means of locomotion of the agent involved, and whether set in the first , second or third person. Even with a temperature setting of zero, Our experiments show that although LLMs are able to perform well in the simpler dataset, in the second more complex dataset no LLM is able to reliably determine the correct CD, even with a temperature setting of zero
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program
Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs
Free-air performance tests of a 5-metre-diameter Darrieus turbine
A five-meter-diameter vertical-axis wind turbine has been tested at the Sandia Laboratories Wind Turbine Site. The results of these tests and some of the problems associated with free-air testing of wind turbines are presented. The performance data obtained follow the general trend of data obtained in extensive wind tunnel tests of a 2-meter-diameter turbine. However, the power coefficient data are slightly lower than anticipated. The reasons for this discrepancy are explored along with comparisons between experimental data and a computerized aerodynamic prediction model
Moving/deforming mesh techniques for computational fluid dynamics and heat transfer
This report represents a summary of a Laboratory Directed Research and Development (LDRD) project to develop general purpose unstructured grid techniques for solving free and moving boundary problems in computational fluid dynamics and heat transfer. Both control volume finite element and Galerkin finite element techniques were utilized. A very robust technique for keeping the deforming mesh from tangling was implemented; the mesh was treated as a fictitious elastic body. Sample results for an ablating nose tip and buoyancy driven flow in a box are presented. References to additional publications resulting from this work are included
- …