32 research outputs found
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
Recommended from our members
Classification for long-term survival in oligometastatic patients treated with ablative radiotherapy: A multi-institutional pooled analysis
BackgroundRadiotherapy is increasingly used to treat oligometastatic patients. We sought to identify prognostic criteria in oligometastatic patients undergoing definitive hypofractionated image-guided radiotherapy (HIGRT).MethodsExclusively extracranial oligometastatic patients treated with HIGRT were pooled. Characteristics including age, sex, primary tumor type, interval to metastatic diagnosis, number of treated metastases and organs, metastatic site, prior systemic therapy for primary tumor treatment, prior definitive metastasis-directed therapy, and systemic therapy for metastasis associated with overall survival (OS), progression-free survival (PFS), and treated metastasis control (TMC) were assessed by the Cox proportional hazards method. Recursive partitioning analysis (RPA) identified prognostic risk strata for OS and PFS based on pretreatment factors.Results361 patients were included. Primary tumors included non-small cell lung (17%), colorectal (19%), and breast cancer (16%). Three-year OS was 56%, PFS was 24%, and TMC was 72%. On multivariate analysis, primary tumor, interval to metastases, treated metastases number, and mediastinal/hilar lymph node, liver, or adrenal metastases were associated with OS. Primary tumor site, involved organ number, liver metastasis, and prior primary disease chemotherapy were associated with PFS. OS RPA identified five classes: class 1: all breast, kidney, or prostate cancer patients (BKP) (3-year OS 75%, 95% CI 66-85%); class 2: patients without BKP with disease-free interval of 75+ months (3-year OS 85%, 95% CI 67-100%); class 3: patients without BKP, shorter disease-free interval, ≤ two metastases, and age < 62 (3-year OS 55%, 95% CI 48-64%); class 4: patients without BKP, shorter disease-free interval, ≥ three metastases, and age < 62 (3-year OS 38%, 95% CI 24-60%); class 5: all others (3-year OS 13%, 95% CI 5-35%). Higher biologically effective dose (BED) (p < 0.01) was associated with OS.ConclusionsWe identified clinical factors defining oligometastatic patients with favorable outcomes, who we hypothesize are most likely to benefit from metastasis-directed therapy
Recommended from our members
Classification for long-term survival in oligometastatic patients treated with ablative radiotherapy: A multi-institutional pooled analysis
Background: Radiotherapy is increasingly used to treat oligometastatic patients. We sought to identify prognostic criteria in oligometastatic patients undergoing definitive hypofractionated image-guided radiotherapy (HIGRT). Methods: Exclusively extracranial oligometastatic patients treated with HIGRT were pooled. Characteristics including age, sex, primary tumor type, interval to metastatic diagnosis, number of treated metastases and organs, metastatic site, prior systemic therapy for primary tumor treatment, prior definitive metastasis-directed therapy, and systemic therapy for metastasis associated with overall survival (OS), progression-free survival (PFS), and treated metastasis control (TMC) were assessed by the Cox proportional hazards method. Recursive partitioning analysis (RPA) identified prognostic risk strata for OS and PFS based on pretreatment factors. Results: 361 patients were included. Primary tumors included non-small cell lung (17%), colorectal (19%), and breast cancer (16%). Three-year OS was 56%, PFS was 24%, and TMC was 72%. On multivariate analysis, primary tumor, interval to metastases, treated metastases number, and mediastinal/hilar lymph node, liver, or adrenal metastases were associated with OS. Primary tumor site, involved organ number, liver metastasis, and prior primary disease chemotherapy were associated with PFS. OS RPA identified five classes: class 1: all breast, kidney, or prostate cancer patients (BKP) (3-year OS 75%, 95% CI 66–85%); class 2: patients without BKP with disease-free interval of 75+ months (3-year OS 85%, 95% CI 67–100%); class 3: patients without BKP, shorter disease-free interval, ≤ two metastases, and age Conclusions: We identified clinical factors defining oligometastatic patients with favorable outcomes, who we hypothesize are most likely to benefit from metastasis-directed therapy.</p
Clusterin silencing in human lung adenocarcinoma cells induces a mesenchymal-to-epithelial transition through modulating the ERK/Slug pathway
[[abstract]]The ubiquitously expressed glycoprotein Clusterin (CLU) is implicated in diverse cellular processes, yet its genuine molecular function remains undefined. CLU expression has been associated with various human malignancies, yet the mechanisms by which CLU promotes cancer progression and metastasis are not elucidated. In this study, using human lung adenocarcinoma cell lines as a model, we explored the involvement of CLU in modulating invasiveness of cancer cells. We discovered that CLU levels positively correlated with the degree of invasiveness in human lung adenocarcinoma cell lines. The observation that CLU-rich cells displayed a spindle-shape morphology while those with low CLU levels were cuboidal in shape prompted us to investigate if CLU modulates epithelial-to-mesenchymal transitions (EMT). CLU silencing by siRNA in a highly invasive, CLU-rich lung adenocarcinoma cell line induced a mesenchymal-to-epithelial transition (MET) evidenced by the spindle-to-cuboidal morphological change, increased E-cadherin expression, and decreased fibronectin expression. Compared with the vector-transfected cells, CLU-knocked-down (CLUi) cells showed reduced migration and invasion in vitro, as well as decreased metastatic potential in experimental metastasis. Re-expression of CLU in CLUi cells reversed the MET and restored the mesenchymal and invasive phenotypes. We found that Slug, a zinc-finger-containing transcriptional repressor of E-cadherin, was downregulated in CLUi cells. We also discovered that levels of activated ERK correlated with those of CLU and Slug. Taken together, our data suggest that CLU may regulate EMT and aggressive behaviour of human lung adenocarcinoma cells through modulating ERK signalling and Slug expression. 2009 Elsevier Inc. All rights reserved