50 research outputs found

    Conditional Facilitation of an Aphid Vector, Acyrthosiphon pisum, by the Plant Pathogen, Pea Enation Mosaic Virus

    Get PDF
    Plant pathogens can induce symptoms that affect the performance of insect herbivores utilizing the same host plant. Previous studies examining the effects of infection of tic bean, Vicia faba L. (Fabales: Fabaceae), by pea enation mosaic virus (PEMV), an important disease of legume crops, indicated there were no changes in the growth and reproductive rate of its primary vector the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Here, we report the results of laboratory experiments investigating how A. pisum responded to PEMV infection of a different host plant, Pisum sativum L., at different stages of symptom development. Aphid growth rate was negatively related to the age of the host plant, but when they were introduced onto older plants with well-developed PEMV symptoms they exhibited a higher growth rate compared to those developing on uninfected plants of the same age. In choice tests using leaf discs A. pisum showed a strong preference for discs from PEMV-infected peas, probably in response to visual cues from the yellowed and mottled infected leaves. When adults were crowded onto leaves using clip-cages they produced more winged progeny on PEMV-infected plants. The results indicate that PEMV produces symptoms in the host plant that can enhance the performance of A. pisum as a vector, modify the production of winged progeny and affect their spatial distribution. The findings provide further evidence that some insect vector/plant pathogen interactions could be regarded as mutualistic rather than commensal when certain conditions regarding the age, stage of infection and species of host plant are met

    A Method for Distinctly Marking Honey Bees, Apis mellifera, Originating from Multiple Apiary Locations

    Get PDF
    Inexpensive and non-intrusive marking methods are essential to track natural behavior of insects for biological experiments. An inexpensive, easy to construct, and easy to install bee marking device is described in this paper. The device is mounted at the entrance of a standard honey bee Apis mellifera L. (Hymenoptera: Apidae) hive and is fitted with a removable tube that dispenses a powdered marker. Marking devices were installed on 80 honey bee colonies distributed in nine separate apiaries. Each device held a tube containing one of five colored fluorescent powders, or a combination of a fluorescent powder (either green or magenta) plus one of two protein powders, resulting in nine unique marks. The powdered protein markers included egg albumin from dry chicken egg whites and casein from dry powdered milk. The efficacy of the marking procedure for each of the unique markers was assessed on honey bees exiting each apiary. Each bee was examined, first by visual inspection for the presence of colored fluorescent powder and then by egg albumin and milk casein specific enzyme-linked immunosorbent assays (ELISA). Data indicated that all five of the colored fluorescent powders and both of the protein powders were effective honey bee markers. However, the fluorescent powders consistently yielded more reliable marks than the protein powders. In general, there was less than a 1% chance of obtaining a false positive colored or protein-marked bee, but the chance of obtaining a false negative marked bee was higher for “protein-marked” bees

    Leaching losses of nitrate nitrogen and dissolved organic nitrogen from a yearly two crops system, wheat-maize, under monsoon situations

    Full text link
    A large amount of nitrogen (N) fertilizers applied to the winter wheat-summer maize double cropping systems in the North China Plain (NCP) contributes largely to N leaching to the groundwater. A series of field experiments were carried out during October 2004 and September 2007 in a lysimeter field to reveal the temporal changes of N leaching losses below 2-m depth from this land system as well as the effects of N fertilizer application rates on N leaching. Four N rates (0, 180, 260, and 360 kg N ha(-1) as urea) were applied in the study area. Seasonal leachate volumes were 87 and 72 mm in the first and second maize season, respectively, and 13 and 4 mm during the winter wheat and maize season in the third rotational year, respectively. The average seasonal flow-weighted NO(3)-N concentrations in leachate for the four N fertilizer application rates ranged from 8.1 to 103.7 mg N l(-1), and seasonal flow-weighted dissolved organic nitrogen (DON) concentrations in leachate varied from 0.8 to 6.0 mg N l(-1). Total amounts of NO(3)-N leaching lost throughout the 3 years were in the range of 14.6 to 177.8 kg ha(-1) for the four N application rates, corresponding to N leaching losses in the range of 4.0-7.6% of the fertilizers applied. DON losses throughout the 3 years were 1.4, 2.1, 3.6, and 6.3 kg N ha(-1) for the four corresponding fertilization rates. The application rate of 180 kg N ha(-1) was recommended based on the balance between reducing N leaching and maintaining crop yields. The results indicated that there is a potential risk of N leaching during the winter wheat season, and over-fertilization of chemical N can result in substantial N leaching losses by high-intensity rainfalls in summer

    Quantification of In Situ Denitrification Rates in Groundwater Below an Arable and a Grassland System

    Get PDF
    peer-reviewedUnderstanding denitrification rates in groundwater ecosystems can help predict where agricultural reactive nitrogen (N) contributes to environmental degradation. In situ groundwater denitrification rates were determined in subsoil, at the bedrock-interface and in bedrock at two sites, grassland and arable, using an in situ ‘push-pull’ method with 15N labelled nitrate (NO3--N). Measured groundwater denitrification rates ranged from 1.3 to 469.5 ”g N kg-1d-1. Exceptionally high denitrification rates observed at the bedrock-interface at grassland site (470±152”g N kg-1d-1; SE, standard error) suggest that deep groundwater can serve as substantial hotspots for NO3--N removal. However, denitrification rates at the other locations were low and may not substantially reduce NO3--N delivery to surface waters. Denitrification rates were negatively correlated with ambient dissolved oxygen (DO), redox potential (Eh), ks and NO3- (all p-values p<0.01) and positively correlated with SO42- (p<0.05). Higher mean N2O/(N2O+N2) ratios at arable (0.28) site than the grassland (0.10) revealed that arable site has higher potential to indirect N2O emissions. Identification of areas with high and low denitrification and related site parameters can be a tool to manage agricultural N to safeguard the environment.Department of Agriculture and Food, Ireland - Research Stimulus Fund Programme (Grant RSF 06383
    corecore