3,886 research outputs found

    Star-forming accretion flows and the low luminosity nuclei of giant elliptical galaxies

    Full text link
    The luminosities of the centers of nearby elliptical galaxies are very low compared to models of thin disc accretion to their black holes at the Bondi rate, typically a few hundredths to a few tenths of a solar mass per year. This has motivated models of inefficiently-radiated accretion that invoke weak electron-ion thermal coupling, and/or inhibited accretion rates due to convection or outflows. Here we point out that even if such processes are operating, a significant fraction of the accreting gas is prevented from reaching the central black hole because it condenses into stars in a gravitationally unstable disc. Star formation occurs inside the Bondi radius (typically ~100pc in giant ellipticals), but still relatively far from the black hole in terms of Schwarzschild radii. Star formation depletes and heats the gas disc, eventually leading to a marginally stable, but much reduced, accretion flow to the black hole. We predict the presence of cold (~100K), dusty gas discs, containing clustered H-alpha emission and occasional type II supernovae, both resulting from the presence of massive stars. Star formation accounts for several features of the M87 system: a thin disc, traced by H-alpha emission, is observed on scales of about 100pc, with features reminiscent of spiral arms and dust lanes; the star formation rate inferred from the intensity of H-alpha emission is consistent with the Bondi accretion rate of the system. Star formation may therefore help suppress accretion onto the central engines of massive ellipticals. We also discuss some implications for the fueling of the Galactic center and quasars.Comment: 13 pages, accepted to MNRA

    The formation of high-field magnetic white dwarfs from common envelopes

    Full text link
    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.Comment: Accepted to Proceedings of the National Academy of Sciences. Under PNAS embargo until time of publicatio

    Dynamos and Chemical Mixing in Evolved Stars

    Full text link
    In low-mass Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stars, anomalous mixing must transport material near the hydrogen-burning shell to the convective envelope. Recently, it was suggested that buoyant magnetic flux tubes could supply the necessary transport rate (Busso et al. 2007). The fields are assumed to originate from a dynamo operating in the stellar interior. Here, we show what is required of an α−Ω\alpha-\Omega dynamo in the envelope of an AGB star to maintain these fields. Differential rotation and rotation drain via turbulent dissipation and Poynting flux, so if shear can be resupplied by convection, then large-scale toroidal field strengths of \left\simeq3\times10^4 G can be sustained at the base of the convection zone.Comment: 7 pages, 3 figures. To appear in AIP Proceedings of the IXth Torino Workshop on AGB Nucleosynthesi

    Sleep and future cognitive decline

    Get PDF

    Importance of an Astrophysical Perspective for Textbook Relativity

    Get PDF
    The importance of a teaching a clear definition of the ``observer'' in special relativity is highlighted using a simple astrophysical example from the exciting current research area of ``Gamma-Ray Burst'' astrophysics. The example shows that a source moving relativistically toward a single observer at rest exhibits a time ``contraction'' rather than a ``dilation'' because the light travel time between the source and observer decreases with time. Astrophysical applications of special relativity complement idealized examples with real applications and very effectively exemplify the role of a finite light travel time.Comment: 5 pages TeX, European Journal of Physics, in pres

    Accretion Disks and Dynamos: Toward a Unified Mean Field Theory

    Full text link
    Conversion of gravitational energy into radiation in accretion discs and the origin of large scale magnetic fields in astrophysical rotators have often been distinct topics of research. In semi-analytic work on both problems it has been useful to presume large scale symmetries, necessarily resulting in mean field theories. MHD turbulence makes the underlying systems locally asymmetric and nonlinear. Synergy between theory and simulations should aim for the development of practical mean field models that capture essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion theory exemplify such ongoing pursuits. 21st century MFD theory has more nonlinear predictive power compared to 20th century MFD theory, whereas accretion theory is still in a 20th century state. In fact, insights from MFD theory are applicable to accretion theory and the two are artificially separated pieces of what should be a single theory. I discuss pieces of progress that provide clues toward a unified theory. A key concept is that large scale magnetic fields can be sustained via local or global magnetic helicity fluxes or via relaxation of small scale magnetic fluctuations, without the kinetic helicity driver of 20th century textbooks. These concepts may help explain the formation of large scale fields that supply non-local angular momentum transport via coronae and jets in a unified theory of accretion and dynamos. In diagnosing the role of helicities and helicity fluxes in disk simulations, each disk hemisphere should be studied separately to avoid being misled by cancelation that occurs as a result of reflection asymmetry. The fraction of helical field energy in disks is expected to be small compared to the total field in each hemisphere as a result of shear, but can still be essential for large scale dynamo action.Comment: For the Proceedings of the Third International Conference and Advanced School "Turbulent Mixing and Beyond," TMB-2011 held on 21 - 28 August 2011 at the Abdus Salam International Centre for Theoretical Physics, Trieste, http://users.ictp.it/~tmb/index2011.html Italy, To Appear in Physica Scripta (corrected small items to match version in print

    Very Small Strangelets

    Full text link
    We study the stability of small strangelets by employing a simple model of strange matter as a gas of non-interacting fermions confined in a bag. We solve the Dirac equation and populate the energy levels of the bag one quark at a time. Our results show that for system parameters such that strange matter is unbound in bulk, there may still exist strangelets with A<100A<100 that are stable and/or metastable. The lifetime of these strangelets may be too small to detect in current accelerator experiments, however.Comment: 13 pages, MIT CTP#217
    • 

    corecore