3,271 research outputs found
Distinguishing Solar Flare Types by Differences in Reconnection Regions
Observations show that magnetic reconnection and its slow shocks occur in
solar flares. The basic magnetic structures are similar for long duration event
(LDE) flares and faster compact impulsive (CI) flares, but the former require
less non-thermal electrons than the latter. Slow shocks can produce the
required non-thermal electron spectrum for CI flares by Fermi acceleration if
electrons are injected with large enough energies to resonate with scattering
waves. The dissipation region may provide the injection electrons, so the
overall number of non-thermal electrons reaching the footpoints would depend on
the size of the dissipation region and its distance from the chromosphere. In
this picture, the LDE flares have converging inflows toward a dissipation
region that spans a smaller overall length fraction than for CI flares. Bright
loop-top X-ray spots in some CI flares can be attributed to particle trapping
at fast shocks in the downstream flow, the presence of which is determined by
the angle of the inflow field and velocity to the slow shocks.Comment: 15 pages TeX and 2 .eps figures, accepted to Ap.J.Let
The Formation of Crystalline Dust in AGB Winds from Binary Induced Spiral Shocks
As stars evolve along the Asymptotic Giant Branch, strong winds are driven
from the outer envelope. These winds form a shell, which may ultimately become
a planetary nebula. Many planetary nebulae are highly asymmetric, hinting at
the presence of a binary companion. Some post-Asymptotic Giant Branch objects
are surrounded by torii of crystalline dust, but there is no generally accepted
mechanism for annealing the amorphous grains in the wind to crystals. In this
Letter, we show that the shaping of the wind by a binary companion is likely to
lead to the formation of crystalline dust in the orbital plane of the binary.Comment: Submitted to ApJ
Accretion Disks and Dynamos: Toward a Unified Mean Field Theory
Conversion of gravitational energy into radiation in accretion discs and the
origin of large scale magnetic fields in astrophysical rotators have often been
distinct topics of research. In semi-analytic work on both problems it has been
useful to presume large scale symmetries, necessarily resulting in mean field
theories. MHD turbulence makes the underlying systems locally asymmetric and
nonlinear. Synergy between theory and simulations should aim for the
development of practical mean field models that capture essential physics and
can be used for observational modeling. Mean field dynamo (MFD) theory and
alpha-viscosity accretion theory exemplify such ongoing pursuits. 21st century
MFD theory has more nonlinear predictive power compared to 20th century MFD
theory, whereas accretion theory is still in a 20th century state. In fact,
insights from MFD theory are applicable to accretion theory and the two are
artificially separated pieces of what should be a single theory. I discuss
pieces of progress that provide clues toward a unified theory. A key concept is
that large scale magnetic fields can be sustained via local or global magnetic
helicity fluxes or via relaxation of small scale magnetic fluctuations, without
the kinetic helicity driver of 20th century textbooks. These concepts may help
explain the formation of large scale fields that supply non-local angular
momentum transport via coronae and jets in a unified theory of accretion and
dynamos. In diagnosing the role of helicities and helicity fluxes in disk
simulations, each disk hemisphere should be studied separately to avoid being
misled by cancelation that occurs as a result of reflection asymmetry. The
fraction of helical field energy in disks is expected to be small compared to
the total field in each hemisphere as a result of shear, but can still be
essential for large scale dynamo action.Comment: For the Proceedings of the Third International Conference and
Advanced School "Turbulent Mixing and Beyond," TMB-2011 held on 21 - 28
August 2011 at the Abdus Salam International Centre for Theoretical Physics,
Trieste, http://users.ictp.it/~tmb/index2011.html Italy, To Appear in Physica
Scripta (corrected small items to match version in print
The azimuth structure of nuclear collisions -- I
We describe azimuth structure commonly associated with elliptic and directed
flow in the context of 2D angular autocorrelations for the purpose of precise
separation of so-called nonflow (mainly minijets) from flow. We extend the
Fourier-transform description of azimuth structure to include power spectra and
autocorrelations related by the Wiener-Khintchine theorem. We analyze several
examples of conventional flow analysis in that context and question the
relevance of reaction plane estimation to flow analysis. We introduce the 2D
angular autocorrelation with examples from data analysis and describe a
simulation exercise which demonstrates precise separation of flow and nonflow
using the 2D autocorrelation method. We show that an alternative correlation
measure based on Pearson's normalized covariance provides a more intuitive
measure of azimuth structure.Comment: 27 pages, 12 figure
Geographies of the COVID-19 pandemic
The spread of the novel coronavirus (SARS-CoV-2) has resulted in the most devastating global public health crisis in over a century. At present, over 10 million people from around the world have contracted the Coronavirus Disease 2019 (COVID-19), leading to more than 500,000 deaths globally. The global health crisis unleashed by the COVID-19 pandemic has been compounded by political, economic, and social crises that have exacerbated existing inequalities and disproportionately affected the most vulnerable segments of society. The global pandemic has had profoundly geographical consequences, and as the current crisis continues to unfold, there is a pressing need for geographers and other scholars to critically examine its fallout. This introductory article provides an overview of the current special issue on the geographies of the COVID-19 pandemic, which includes 42 commentaries written by contributors from across the globe. Collectively, the contributions in this special issue highlight the diverse theoretical perspectives, methodological approaches, and thematic foci that geographical scholarship can offer to better understand the uneven geographies of the Coronavirus/COVID-19. </jats:p
Very Small Strangelets
We study the stability of small strangelets by employing a simple model of
strange matter as a gas of non-interacting fermions confined in a bag. We solve
the Dirac equation and populate the energy levels of the bag one quark at a
time. Our results show that for system parameters such that strange matter is
unbound in bulk, there may still exist strangelets with that are stable
and/or metastable. The lifetime of these strangelets may be too small to detect
in current accelerator experiments, however.Comment: 13 pages, MIT CTP#217
A magnetically collimated jet from an evolved star
Planetary nebulae often have asymmetric shapes, which could arise due to
collimated jets from evolved stars before evolution to the planetary nebula
phase. The source of jet collimation in these stars is unknown. Magnetic fields
are thought to collimate outflows that are observed in many other astrophysical
sources, such as active galactic nuclei and proto-stars, although hitherto
there are no direct observations of both the magnetic field direction and
strength in any collimated jet. Theoretical models have shown that magnetic
fields could also be the dominant source of collimation of jet in evolved
stars. Here we report measurements of the polarization of water vapour masers
that trace the precessing jet emanating from the asymptotic giant branch star
W43A at 2.6 kpc from the Sun, which is undergoing rapid evolution into a
planetary nebula. The masers occur in two clusters at opposing tips of the
jets, ~1,000 AU from the star. We find direct evidence that the magnetic field
is collimating the jet.Comment: Published in Nature 440 (March 2nd 2006). High-res figures can be
found at http://www.jb.man.ac.uk/~wouter/papers/w43a/w43a.htm
Recommended from our members
Effect of temperature, relative humidity and aphid developmental stage on the efficacy of the mycoinsecticide Mycotal® against Myzus persicae
The green peach aphid, Myzus persicae, is a major pest worldwide. An examination of the impact of temperature, relative humidity and developmental stages of M. persicae on the efficacy of the whitefly mycoinsecticide Mycotal®, based on Lecanicillium muscarium and the effects of infection on aphid fecundity was evaluated under controlled conditions. Although this fungus can be grown at a broad range of temperatures (15-30oC), the optimum temperature for control of M. persicae ranged between 20 and 30oC. L. muscarium had high efficacy as a microbial control against M. persicae between 55 and 90% relative humidity. Total mortality of aphids treated with different spore dosages of L. muscarium varied according to the developmental stage: adults, fourth and third instar nymphs of proved more susceptible than first instar nymphs. Although the fungus did not affect the rate of nymph production, the reproductive period of aphids significantly decreased with increasing the spore dosage. Thus, total fecundity of treated aphids was 22.6 ± 1.1 and 31.6 ± 2.4 offspring per adult at the medium (644 ± viable spore/mm2) and low (330 ± 40 viable spore/mm2) dosages, compared with 45.7 ± 4.3 offspring per untreated aphid. The results suggest that L. muscarium has the potential as a biological control agent of M. persicae. However, fungal infection appears to have no sub-lethal effects on the fitness of the host’s progeny
- …