3,944 research outputs found

    Effect of Fractional Kinetic Helicity on Turbulent Magnetic Dynamo Spectra

    Get PDF
    Magnetic field amplification in astrophysics ultimately requires an understanding of magnetohydrodynamic turbulence. Kinetic helicity has long been known to be important for large scale field growth in forced MHD turbulence, and has been recently demonstrated numerically to be asymptotically consistent with slow mean field dynamo action in a periodic box. Here we show numerically that the magnetic spectrum at and below the forcing scale is also strongly influenced by kinetic helicity. We identify a critical value, fh,critf_{h,crit} above which the magnetic spectrum develops maxima at wavenumber =1= 1 scale {\it and} at the forcing scale, For f<fh,critf< f_{h,crit} the field peaks only at the resistive scale. Kinetic helicity may thus be important not only for generating a large scale field, but also for establishing observed peaks in magnetic spectra at the forcing scale. The turbulent Galactic disk provides an example where both large scale (>> supernova forcing scale) fields and small scale (≤\le forcing scale, with peak at forcing scale) fields are observed. We discuss this, and the potential application to the protogalaxy, but also emphasize the limitations in applying our results to these systems.Comment: version accepted to ApJL, 10 pages, 3 fig

    Implications of mean field accretion disc theory for vorticity and magnetic field growth

    Get PDF
    In addition to the scalar Shakura-Sunyaev αss\alpha_{ss} turbulent viscosity transport term used in simple analytic accretion disc modeling, a pseudoscalar transport term also arises. The essence of this term can be captured even in simple models for which vertical averaging is interpreted as integration over a half-thickness and one separately studies each hemisphere. The additional term highlights a complementarity between mean field magnetic dynamo theory and accretion disc theory treated as a mean field theory. Such pseudoscalar terms have been studied, and can lead to large scale magnetic field and vorticity growth. Here it is shown that vorticity can grow even in the simplest azimuthal and half-height integrated disc model, for which mean quantities depend only on radius. The simplest vorticity growth solutions seem to have scales and vortex survival times consistent those required for facilitating planet formation. Also it is shown that when the magnetic back-reaction is included to lowest order, the pseudoscalar driving the magnetic field growth and that driving the vorticity growth will behave differently with respect to shearing and non-shearing flows: the former can reverse sign in the two cases, while the latter will have the same sign.Comment: 17 Pages LaTex, revised versio

    Simulations of a Magnetic Fluctuation Driven Large Scale Dynamo and Comparison with a Two-scale Model

    Full text link
    Models of large scale (magnetohydrodynamic) dynamos (LSD) which couple large scale field growth to total magnetic helicity evolution best predict the saturation of LSDs seen in simulations. For the simplest so called "{\alpha}2" LSDs in periodic boxes, the electromotive force driving LSD growth depends on the difference between the time-integrated kinetic and current helicity associated with fluctuations. When the system is helically kinetically forced (KF), the growth of the large scale helical field is accompanied by growth of small scale magnetic (and current) helicity which ultimately quench the LSD. Here, using both simulations and theory, we study the complementary magnetically forced(MF) case in which the system is forced with an electric field that supplies magnetic helicity. For this MF case, the kinetic helicity becomes the back-reactor that saturates the LSD. Simulations of both MF and KF cases can be approximately modeled with the same equations of magnetic helicity evolution, but with complementary initial conditions. A key difference between KF and MF cases is that the helical large scale field in the MF case grows with the same sign of injected magnetic helicity, whereas the large and small scale magnetic helicities grow with opposite sign for the KF case. The MF case can arise even when the thermal pressure is approximately smaller than the magnetic pressure, and requires only that helical small scale magnetic fluctuations dominate helical velocity fluctuations in LSD driving. We suggest that LSDs in accretion discs and Babcock models of the solar dynamo are actually MF LSDs.Comment: 12 pages, 34 figure

    The formation of high-field magnetic white dwarfs from common envelopes

    Full text link
    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.Comment: Accepted to Proceedings of the National Academy of Sciences. Under PNAS embargo until time of publicatio

    An architecture for efficient gravitational wave parameter estimation with multimodal linear surrogate models

    Get PDF
    The recent direct observation of gravitational waves has further emphasized the desire for fast, low-cost, and accurate methods to infer the parameters of gravitational wave sources. Due to expense in waveform generation and data handling, the cost of evaluating the likelihood function limits the computational performance of these calculations. Building on recently developed surrogate models and a novel parameter estimation pipeline, we show how to quickly generate the likelihood function as an analytic, closed-form expression. Using a straightforward variant of a production-scale parameter estimation code, we demonstrate our method using surrogate models of effective-one-body and numerical relativity waveforms. Our study is the first time these models have been used for parameter estimation and one of the first ever parameter estimation calculations with multi-modal numerical relativity waveforms, which include all l <= 4 modes. Our grid-free method enables rapid parameter estimation for any waveform with a suitable reduced-order model. The methods described in this paper may also find use in other data analysis studies, such as vetting coincident events or the computation of the coalescing-compact-binary detection statistic.Comment: 10 pages, 3 figures, and 1 tabl

    Three Dimensional Evolution of a Relativistic Current Sheet : Triggering of Magnetic Reconnection by the Guide Field

    Full text link
    The linear and non-linear evolution of a relativistic current sheet of pair (e±e^{\pm}) plasmas is investigated by three-dimensional particle-in-cell simulations. In a Harris configuration, it is obtained that the magnetic energy is fast dissipated by the relativistic drift kink instability (RDKI). However, when a current-aligned magnetic field (the so-called "guide field") is introduced, the RDKI is stabilized by the magnetic tension force and it separates into two obliquely-propagating modes, which we call the relativistic drift-kink-tearing instability (RDKTI). These two waves deform the current sheet so that they trigger relativistic magnetic reconnection at a crossover thinning point. Since relativistic reconnection produces a lot of non-thermal particles, the guide field is of critical importance to study the energetics of a relativistic current sheet.Comment: 12 pages, 4 figures; fixed typos and added a footnote [24
    • …
    corecore