7,748 research outputs found
Stress corrosion cracking of titanium alloys: SCC velocity: concentration of TiCl3
Stress corrosion cracking of titanium alloys, velocity of cracking in aqueous and methanol solutions and halogenated organic solvents, concentration of TiCl3 in crack
Fundamental investigation of stress corrosion cracking
Two principle areas studied were stress corrosion crack growth rates of a titanium alloy in liquid environments containing halide ions and pitting corrosion of titanium in bromide solutions. Two initial assumptions were made, that the rate of propagation was controlled by a macroscopic solution parameter and that this parameter was viscosity. A series of solutions were prepared using lithium chloride as the solute and water, methanol, glycerin, formic acid, acetone, dimethyl sulphoxide, etc. As solvents, these solutions were prepared with a 5:1 solvent-solute ratio. Viscosity was varied by changing the temperature and it was found: (1) In all solvents the velocity of cracking was proportional to the reciprocal of the viscosity. (2) Each solvent gave a separate relationship, (3) The temperature dependence and numerical values for the apparent activation energy of cracking and viscosity were the same
Stress corrosion cracking of titanium alloys: Studies of cracks in thin specimens; SCC of Ti-6Al-4V in chloride, iodide and fluoride solutions; stress corrosion cracking in molten salts; electrochemistry of freshly generated titanium surfaces
Electrochemistry of freshly generated titanium surfaces and stress corrosion cracking in aqueous solutions and in molten salt
Absence of magnetic long range order in YCrSbO: bond-disorder induced magnetic frustration in a ferromagnetic pyrochlore
The consequences of nonmagnetic-ion dilution for the pyrochlore family
Y()O ( = magnetic ion, = nonmagnetic
ion) have been investigated. As a first step, we experimentally examine the
magnetic properties of YCrSbO ( = 0.5), in which the magnetic
sites (Cr) are percolative. Although the effective Cr-Cr spin exchange
is ferromagnetic, as evidenced by a positive Curie-Weiss temperature,
= 20.1(6) K, our high-resolution neutron powder
diffraction measurements detect no sign of magnetic long range order down to 2
K. In order to understand our observations, we performed numerical simulations
to study the bond-disorder introduced by the ionic size mismatch between
and . Based on these simulations, bond-disorder ( 0.23)
percolates well ahead of site-disorder ( 0.61). This model
successfully reproduces the critical region (0.2 < < 0.25) for the N\'eel
to spin glass phase transition in Zn(CrGa)O, where
the Cr/Ga-sublattice forms the same corner-sharing tetrahedral network as the
-sublattice in Y()O, and the rapid drop in
magnetically ordered moment in the N\'eel phase [Lee , Phys. Rev. B
77, 014405 (2008)]. Our study stresses the nonnegligible role of bond-disorder
on magnetic frustration, even in ferromagnets
Stress Corrosion Cracking of titanium alloys - SCC of aluminum alloys, polarization of titanium alloys in hydrogen chloride and correlation of titanium and aluminum SCC behavior Quarterly progress report, 1 Oct. 1968 - 31 Mar. 1969
Stress corrosion cracking of titanium alloys and aluminum alloy
Stress corrosion cracking of titanium alloys - Electrochemical mass transport kinetic model, metallurgical and mechanical effects, and proposed relation of electrochemical, metallurgical and mechanical effects Quarterly progress report, 1 Apr. - 30 J
Electrochemical mass transport kinetic model used to study metallurgical and mechanical effects of titanium alloy stress corrosion crackin
Quasistationary binary inspiral. I. Einstein equations for the two Killing vector spacetime
The geometry of two infinitely long lines of mass moving in a fixed circular
orbit is considered as a toy model for the inspiral of a binary system of
compact objects due to gravitational radiation. The two Killing fields in the
toy model are used, according to a formalism introduced by Geroch, to describe
the geometry entirely in terms of a set of tensor fields on the two-manifold of
Killing vector orbits. Geroch's derivation of the Einstein equations in this
formalism is streamlined and generalized. The explicit Einstein equations for
the toy model spacetime are derived in terms of the degrees of freedom which
remain after a particular choice of gauge.Comment: 37 pages, REVTeX, one PostScript Figure included with epsfig; minor
formatting changes and copyright notice added for journal publicatio
The relationship between propagule pressure and establishment success in alien bird populations: a re-analysis of Moulton & Cropper (2019)
A recent analysis by Moulton & Cropper (2019) of a global dataset on alien bird population introductions claims to find no evidence that establishment success is a function of the size of the founding population. Here, we re-analyse Moulton & Cropper’s data and show that this conclusion is based on flawed statistical methods—their data in fact confirm a strong positive relationship between founding population size and establishment success. We also refute several non-statistical arguments against the likelihood of such an effect presented by Moulton & Cropper. We conclude that a core tenet of population biology—that small populations are more prone to extinction—applies to alien populations beyond their native geographic range limits as much as to native populations within them
High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7
We report on small angle neutron scattering measurements of the vortex
lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum
field of 11~T up to 16.7~T with the field applied parallel to the c axis. This
is the first microscopic study of vortex matter in this region of the
superconducting phase. We find the high field VL displays a rhombic structure,
with a field-dependent coordination that passes through a square configuration,
and which does not lock-in to a field-independent structure. The VL pinning
reduces with increasing temperature, but is seen to affect the VL correlation
length even above the irreversibility temperature of the lattice structure. At
high field and temperature we observe a melting transition, which appears to be
first order, with no detectable signal from a vortex liquid above the
transition
Raman study of the Verwey transition in Magnetite at high-pressure and low-temperature; effect of Al doping
We report high-pressure low-temperature Raman studies of the Verwey
transition in pure and Al-doped magnetite (Fe_3O_4). The low temperature phase
of magnetite displays a number of additional Raman modes that serve as
transition markers. These transition markers allow one to investigate the
effect of hydrostatic pressure on the Verwey transition temperature. Al-doped
magnetite Fe_2.8Al_0.2O_4 (TV=116.5K) displays a nearly linear decrease of the
transition temperature with an increase of pressure yielding dP/dT_V = -0.096
GPa/K. In contrast pure magnetite displays a significantly steeper slope of the
PT equilibrium line with dP/dT_V = -0.18 GPa/K. The slope of the PT equilibrium
lines is related to the changes of the molar entropy and molar volume at the
transition. We compare our spectroscopic data with that obtained from the
ambient pressure specific heat measurements and find a good agreement in the
optimally doped magnetite. Our data indicates that Al doping leads to a smaller
entropy change and larger volume expansion at the transition. Our data displays
the trends that are consistent with the mean field model of the transition that
assumes charge ordering in magnetite.Comment: 17 pages, 3 figure
- …