7,748 research outputs found

    Stress corrosion cracking of titanium alloys: SCC velocity: concentration of TiCl3

    Get PDF
    Stress corrosion cracking of titanium alloys, velocity of cracking in aqueous and methanol solutions and halogenated organic solvents, concentration of TiCl3 in crack

    Fundamental investigation of stress corrosion cracking

    Get PDF
    Two principle areas studied were stress corrosion crack growth rates of a titanium alloy in liquid environments containing halide ions and pitting corrosion of titanium in bromide solutions. Two initial assumptions were made, that the rate of propagation was controlled by a macroscopic solution parameter and that this parameter was viscosity. A series of solutions were prepared using lithium chloride as the solute and water, methanol, glycerin, formic acid, acetone, dimethyl sulphoxide, etc. As solvents, these solutions were prepared with a 5:1 solvent-solute ratio. Viscosity was varied by changing the temperature and it was found: (1) In all solvents the velocity of cracking was proportional to the reciprocal of the viscosity. (2) Each solvent gave a separate relationship, (3) The temperature dependence and numerical values for the apparent activation energy of cracking and viscosity were the same

    Absence of magnetic long range order in Y2_{2}CrSbO7_{7}: bond-disorder induced magnetic frustration in a ferromagnetic pyrochlore

    Get PDF
    The consequences of nonmagnetic-ion dilution for the pyrochlore family Y2_{2}(M1−xNxM_{1-x}N_{x})2_{2}O7_{7} (MM = magnetic ion, NN = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2_{2}CrSbO7_{7} (xx = 0.5), in which the magnetic sites (Cr3+^{3+}) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW\Theta_\mathrm{{CW}} = 20.1(6) K, our high-resolution neutron powder diffraction measurements detect no sign of magnetic long range order down to 2 K. In order to understand our observations, we performed numerical simulations to study the bond-disorder introduced by the ionic size mismatch between MM and NN. Based on these simulations, bond-disorder (xbx_{b} ≃\simeq 0.23) percolates well ahead of site-disorder (xsx_{s} ≃\simeq 0.61). This model successfully reproduces the critical region (0.2 < xx < 0.25) for the N\'eel to spin glass phase transition in Zn(Cr1−x_{1-x}Gax_{x})2_{2}O4_{4}, where the Cr/Ga-sublattice forms the same corner-sharing tetrahedral network as the M/NM/N-sublattice in Y2_{2}(M1−xNxM_{1-x}N_{x})2_{2}O7_{7}, and the rapid drop in magnetically ordered moment in the N\'eel phase [Lee etet alal, Phys. Rev. B 77, 014405 (2008)]. Our study stresses the nonnegligible role of bond-disorder on magnetic frustration, even in ferromagnets

    Quasistationary binary inspiral. I. Einstein equations for the two Killing vector spacetime

    Get PDF
    The geometry of two infinitely long lines of mass moving in a fixed circular orbit is considered as a toy model for the inspiral of a binary system of compact objects due to gravitational radiation. The two Killing fields in the toy model are used, according to a formalism introduced by Geroch, to describe the geometry entirely in terms of a set of tensor fields on the two-manifold of Killing vector orbits. Geroch's derivation of the Einstein equations in this formalism is streamlined and generalized. The explicit Einstein equations for the toy model spacetime are derived in terms of the degrees of freedom which remain after a particular choice of gauge.Comment: 37 pages, REVTeX, one PostScript Figure included with epsfig; minor formatting changes and copyright notice added for journal publicatio

    The relationship between propagule pressure and establishment success in alien bird populations: a re-analysis of Moulton & Cropper (2019)

    Get PDF
    A recent analysis by Moulton & Cropper (2019) of a global dataset on alien bird population introductions claims to find no evidence that establishment success is a function of the size of the founding population. Here, we re-analyse Moulton & Cropper’s data and show that this conclusion is based on flawed statistical methods—their data in fact confirm a strong positive relationship between founding population size and establishment success. We also refute several non-statistical arguments against the likelihood of such an effect presented by Moulton & Cropper. We conclude that a core tenet of population biology—that small populations are more prone to extinction—applies to alien populations beyond their native geographic range limits as much as to native populations within them

    High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7

    Full text link
    We report on small angle neutron scattering measurements of the vortex lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum field of 11~T up to 16.7~T with the field applied parallel to the c axis. This is the first microscopic study of vortex matter in this region of the superconducting phase. We find the high field VL displays a rhombic structure, with a field-dependent coordination that passes through a square configuration, and which does not lock-in to a field-independent structure. The VL pinning reduces with increasing temperature, but is seen to affect the VL correlation length even above the irreversibility temperature of the lattice structure. At high field and temperature we observe a melting transition, which appears to be first order, with no detectable signal from a vortex liquid above the transition

    Raman study of the Verwey transition in Magnetite at high-pressure and low-temperature; effect of Al doping

    Full text link
    We report high-pressure low-temperature Raman studies of the Verwey transition in pure and Al-doped magnetite (Fe_3O_4). The low temperature phase of magnetite displays a number of additional Raman modes that serve as transition markers. These transition markers allow one to investigate the effect of hydrostatic pressure on the Verwey transition temperature. Al-doped magnetite Fe_2.8Al_0.2O_4 (TV=116.5K) displays a nearly linear decrease of the transition temperature with an increase of pressure yielding dP/dT_V = -0.096 GPa/K. In contrast pure magnetite displays a significantly steeper slope of the PT equilibrium line with dP/dT_V = -0.18 GPa/K. The slope of the PT equilibrium lines is related to the changes of the molar entropy and molar volume at the transition. We compare our spectroscopic data with that obtained from the ambient pressure specific heat measurements and find a good agreement in the optimally doped magnetite. Our data indicates that Al doping leads to a smaller entropy change and larger volume expansion at the transition. Our data displays the trends that are consistent with the mean field model of the transition that assumes charge ordering in magnetite.Comment: 17 pages, 3 figure
    • …
    corecore