36 research outputs found
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Contribution of Microbe-Mediated Processes in Nitrogen Cycle to Attain Environmental Equilibrium
Nitrogen (N), the most important element, is required by all living organisms for
the synthesis of complex organic molecules like amino acids, proteins, lipids etc.
Nitrogen cycle is considered to be the most complex yet arguably important cycle
next to carbon cycle. Nitrogen cycle includes oxic and anoxic reactions like
organic N mineralization, ammonia assimilation, nitrification denitrification,
anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to
ammonium (DNRA), comammox, codenitrification etc. Nitrogen cycling is one
of the most crucial processes required for the recycling of essential chemical
requirements on the planet. Soil microorganisms not only improve N-cycle
balance but also pave the way for sustainable agricultural practices, leading to
improved soil properties and crop productivity as most plants are opportunistic in
the uptake of soluble or available forms of N from soil. Microbial N
transformations are influenced by plants to improve their nutrition and vice
versa. Diverse microorganisms, versatile metabolic activities, and varied biotic and abiotic conditions may result in the shift in the equilibrium state of different
N-cycling processes. This chapter is an overview of the mechanisms and genes
involved in the diverse microorganisms associated in the operation of nitrogen
cycle and the roles of such microorganisms in different agroecosystems
Recommended from our members
Pulmonary function reduction in diabetes with and without chronic obstructive pulmonary disease.
ObjectiveDiabetes damages major organ systems through disrupted glycemic control and increased inflammation. The effects of diabetes on the lung have been of interest for decades, but the modest reduction in pulmonary function and its nonprogressive nature have limited its investigation. A recent systematic review found that diabetes was associated with reductions in forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and diffusing capacity for carbon monoxide of the lung and increased FEV1/FVC. They reported pooled results including few smokers. This study will examine measures of pulmonary function in participants with extensive smoking exposure.Research design and methodsWe examined pulmonary function in participants with a >10-pack-year history of smoking with and without diabetes with and without chronic obstructive pulmonary disease (COPD). We measured pulmonary function, exercise capacity, and pulmonary-related quality of life in 10,129 participants in the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) Study.ResultsParticipants with diabetes were observed to have reduced pulmonary function after controlling for known risk factors and also significant reductions in exercise capacity and quality of life across functional stages of COPD.ConclusionsPulmonary function in patients with ≥10 pack-years of smoking and diabetes is reduced, and this decrease is associated with significant reductions in activity-related quality of life and exercise capacity
Abdominal Visceral Adipose Tissue is Associated with Myocardial Infarction in Patients with COPD.
BackgroundCardiovascular diseases are frequent and a major cause of death in patients with chronic obstructive pulmonary disease (COPD). In the general population, various fat depots including abdominal visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and liver fat have been linked to increased risk of cardiovascular diseases. We hypothesize that these adipose tissue compartments are associated with myocardial infarction (MI) in patients with COPD.MethodsWe collected measures of VAT and SAT areas and liver attenuation on the computed tomography scan of the chest from 1267 patients with COPD. MI was a self-reported physician-diagnosed outcome. The association between fat depots and self-reported history of MI was assessed by logistic regression analysis in which the patients within the 2 lowest tertiles of VAT and SAT areas were the reference group.ResultsEighty three patients (6.6%) reported a history of MI at the time of enrollment. Compared to patients who did not have an MI episode, those who had a prior MI had a higher VAT area (mean ± SD, 303.4 ± 208.5 vs. 226.8 ± 172.6 cm2; P=0.002) with no differences in SAT area and liver fat. After adjustment for age, gender, obesity, pack years of smoking, hypertension, high cholesterol, and diabetes, patients within the upper tertile (vs. those in the lower tertiles) of VAT area had increased odds of MI (odds ratio [OR] 1.86, 95% confidence interval [CI] 1.02 - 3.41).ConclusionIncreased abdominal visceral fat is independently associated with a history of MI in individuals with COPD
Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions
PURPOSE: The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. METHODS: The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearby edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. RESULTS: The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. CONCLUSIONS: The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers