2,665 research outputs found
Surface resonance of the (2Ă1) reconstructed lanthanum hexaboride (001)-cleavage plane : a combined STM and DFT study
We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6) using scanning tunneling microscopy and density-functional theory (DFT). Experimentally, we found a (2Ă1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinthlike pattern. These findings are supported by low-energy electron diffraction experiments. Slab calculations within the framework of DFT show that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy shows a prominent spectral feature at â0.6eV. Using DFT, we identify this structure as a surface resonance of the (2Ă1) reconstructed LaB6 (100) surface which is dominated by boron dangling bond states and lanthanum d states
First-principles study of spontaneous polarization in multiferroic BiFeO
The ground-state structural and electronic properties of ferroelectric
BiFeO are calculated using density functional theory within the local
spin-density approximation and the LSDA+U method. The crystal structure is
computed to be rhombohedral with space group , and the electronic
structure is found to be insulating and antiferromagnetic, both in excellent
agreement with available experiments. A large ferroelectric polarization of
90-100 C/cm is predicted, consistent with the large atomic
displacements in the ferroelectric phase and with recent experimental reports,
but differing by an order of magnitude from early experiments. One possible
explanation is that the latter may have suffered from large leakage currents.
However both past and contemporary measurements are shown to be consistent with
the modern theory of polarization, suggesting that the range of reported
polarizations may instead correspond to distinct switching paths in structural
space. Modern measurements on well-characterized bulk samples are required to
confirm this interpretation.Comment: (9 pages, 5 figures, 5 tables
Bayesian Error Estimation in Density Functional Theory
We present a practical scheme for performing error estimates for Density
Functional Theory calculations. The approach which is based on ideas from
Bayesian statistics involves creating an ensemble of exchange-correlation
functionals by comparing with an experimental database of binding energies for
molecules and solids. Fluctuations within the ensemble can then be used to
estimate errors relative to experiment on calculated quantities like binding
energies, bond lengths, and vibrational frequencies. It is demonstrated that
the error bars on energy differences may vary by orders of magnitude for
different systems in good agreement with existing experience.Comment: 5 pages, 3 figure
Neutral-ionic phase transition : a thorough ab-initio study of TTF-CA
The prototype compound for the neutral-ionic phase transition, namely TTF-CA,
is theoretically investigated by first-principles density functional theory
calculations. The study is based on three neutron diffraction structures
collected at 40, 90 and 300 K (Le Cointe et al., Phys. Rev. B 51, 3374 (1995)).
By means of a topological analysis of the total charge densities, we provide a
very precise picture of intra and inter-chain interactions. Moreover, our
calculations reveal that the thermal lattice contraction reduces the indirect
band gap of this organic semi-conductor in the neutral phase, and nearly closes
it in the vicinity of the transition temperature. A possible mechanism of the
neutral-ionic phase transition is discussed. The charge transfer from TTF to CA
is also derived by using three different technics.Comment: 11 pages, 9 figures, 7 table
Anisotropy of the Mobility of Pentacene from Frustration
The bandstructure of pentacene is calculated using first-principles density
functional theory. A large anisotropy of the hole and electron effective masses
within the molecular planes is found. The band dispersion of the HOMO and the
LUMO is analyzed with the help of a tight-binding fit. The anisotropy is shown
to be intimately related to the herringbone structure.Comment: Accepted for publication in Synthetic Metal
DFT Study of Planar Boron Sheets: A New Template for Hydrogen Storage
We study the hydrogen storage properties of planar boron sheets and compare
them to those of graphene. The binding of molecular hydrogen to the boron sheet
(0.05 eV) is stronger than that to graphene. We find that dispersion of alkali
metal (AM = Li, Na, and K) atoms onto the boron sheet markedly increases
hydrogen binding energies and storage capacities. The unique structure of the
boron sheet presents a template for creating a stable lattice of strongly
bonded metal atoms with a large nearest neighbor distance. In contrast, AM
atoms dispersed on graphene tend to cluster to form a bulk metal. In particular
the boron-Li system is found to be a good candidate for hydrogen storage
purposes. In the fully loaded case this compound can contain up to 10.7 wt. %
molecular hydrogen with an average binding energy of 0.15 eV/H2.Comment: 19 pages, 7 figures, and 3 table
Separable Dual Space Gaussian Pseudo-potentials
We present pseudo-potential coefficients for the first two rows of the
periodic table. The pseudo potential is of a novel analytic form, that gives
optimal efficiency in numerical calculations using plane waves as basis set. At
most 7 coefficients are necessary to specify its analytic form. It is separable
and has optimal decay properties in both real and Fourier space. Because of
this property, the application of the nonlocal part of the pseudo-potential to
a wave-function can be done in an efficient way on a grid in real space. Real
space integration is much faster for large systems than ordinary multiplication
in Fourier space since it shows only quadratic scaling with respect to the size
of the system. We systematically verify the high accuracy of these
pseudo-potentials by extensive atomic and molecular test calculations.Comment: 16 pages, 4 postscript figure
On the strong impact of doping in the triangular antiferromagnet CuCrO2
Electronic band structure calculations using the augmented spherical wave
method have been performed for CuCrO2. For this antiferromagnetic (T_N = 24 K)
semiconductor crystallizing in the delafossite structure, it is found that the
valence band maximum is mainly due to the t_2g orbitals of Cr^3+ and that spin
polarization is predicted with 3 mu_B per Cr^3+. The structural
characterizations of CuCr1-xMgxO2 reveal a very limited range of Mg^2+
substitution for Cr^3+ in this series. As soon as x = 0.02, a maximum of 1% Cr
ions substituted by Mg site is measured in the sample. This result is also
consistent with the detection of Mg spinel impurities from X-ray diffraction
for x = 0.01. This explains the saturation of the Mg^2+ effect upon the
electrical resistivity and thermoelectric power observed for x > 0.01. Such a
very weak solubility limit could also be responsible for the discrepancies
found in the literature. Furthermore, the measurements made under magnetic
field (magnetic susceptibility, electrical resistivity and Seebeck coefficient)
support that the Cr^4+ "holes", created by the Mg^2+ substitution, in the
matrix of high spin Cr^3+ (S = 3/2) are responsible for the transport
properties of these compounds.Comment: 9 pages, 11 figures, more information at
http://www.physik.uni-augsburg.de/~eyert
Evidence of silicene in honeycomb structures of silicon on Ag(111)
In the search for evidence of silicene, a two-dimensional honeycomb lattice
of silicon, it is important to obtain a complete picture for the evolution of
Si structures on Ag(111), which is believed to be the most suitable substrate
for growth of silicene so far. In this work we report the finding and evolution
of several monolayer superstructures of silicon on Ag(111) depending on the
coverage and temperature. Combined with first-principles calculations, the
detailed structures of these phases have been illuminated. These structure were
found to share common building blocks of silicon rings, and they evolve from a
fragment of silicene to a complete monolayer silicene and multilayer silicene.
Our results elucidate how silicene formes on Ag(111) surface and provide
methods to synthesize high-quality and large-scale silicene.Comment: 6 pages, 4 figure
- âŠ