3 research outputs found

    Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits

    Full text link
    Coherent interconversion between microwave and optical frequencies can serve as both classical and quantum interfaces for computing, communication, and sensing. Here, we present a compact microwave-optical transducer based on monolithic integration of piezoelectric actuators atop silicon nitride photonic circuits. Such an actuator directly couples microwave signals to a high-overtone bulk acoustic resonator defined by the suspended silica cladding of the optical waveguide core, which leads to enhanced electromechanical and optomechanical couplings. At room temperature, this triply resonant piezo-optomechanical transducer achieves an off-chip photon number conversion efficiency of -48 dB over a bandwidth of 25 MHz at an input pump power of 21 dBm. The approach is scalable in manufacturing and, unlike existing electro-optic transducers, does not rely on superconducting resonators. As the transduction process is bidirectional, we further demonstrate synthesis of microwave pulses from a purely optical input. Combined with the capability of leveraging multiple acoustic modes for transduction, the present platform offers prospects for building frequency-multiplexed qubit interconnects and for microwave photonics at large

    A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform

    No full text
    The availability of thin-film lithium niobate on insulator (LNOI) and advances in processing have led to the emergence of fully integrated LiNbO3 electro-optic devices. Yet to date, LiNbO3 photonic integrated circuits have mostly been fabricated using non-standard etching techniques and partially etched waveguides, that lack the reproducibility achieved in silicon photonics. Widespread application of thin-film LiNbO3 requires a reliable solution with precise lithographic control. Here we demonstrate a heterogeneously integrated LiNbO3 photonic platform employing wafer-scale bonding of thin-film LiNbO3 to silicon nitride (Si3N4) photonic integrated circuits. The platform maintains the low propagation loss (<0.1 dB/cm) and efficient fiber-to-chip coupling (<2.5 dB per facet) of the Si3N4 waveguides and provides a link between passive Si3N4 circuits and electro-optic components with adiabatic mode converters experiencing insertion losses below 0.1 dB. Using this approach we demonstrate several key applications, thus providing a scalable, foundry-ready solution to complex LiNbO3 integrated photonic circuits.ISSN:2041-172
    corecore