122 research outputs found
The Period Variation of and a Spot Model for the Eclipsing Binary AR Bootis
New CCD photometric observations of the eclipsing system AR Boo were obtained
from February 2006 to April 2008. The star's photometric properties are derived
from detailed studies of the period variability and of all available light
curves. We find that over about 56 years the orbital period of the system has
varied due to a combination of an upward parabola and a sinusoid rather than in
a monotonic fashion. Mass transfer from the less massive primary to the more
massive secondary component is likely responsible for at least a significant
part of the secular period change. The cyclical variation with a period of 7.57
yrs and a semi-amplitude of 0.0015 d can be produced either by a
light-travel-time effect due to an unseen companion with a scaled mass of =0.081 or by a magnetic period modulation in the secondary
star. Historical light curves of AR Boo, as well as our own, display
season-to-season light variability, which are best modeled by including both a
cool spot and a hot one on the secondary star. We think that the spots express
magnetic dynamo-related activity and offer limited support for preferring the
magnetic interpretation of the 7.57-year cycle over the third-body
understanding. Our solutions confirm that AR Boo belongs to the W-subtype
contact binary class, consisting of a hotter, less massive primary star with a
spectral type of G9 and a companion of spectral type K1.Comment: 30 pages, including 6 figures and 9 tables, accepted for publication
in A
The First Comprehensive Photometric Study of the Algol-type System CL Aurigae
We present the first extensive photometric results of CL Aur from our BVRI
CCD photometry made on 22 nights from 2003 November through 2005 February.
Fifteen new timings of minimum light were obtained. During the past 104 years,
the orbital period has varied due to a periodic oscillation superposed on a
continuous period increase. The period and semi-amplitude of the oscillation
are about 21.6 yrs and 0.0133 d, respectively. This detail is interpreted as a
light-travel-time effect due to a low-luminosity K-type star gravitationally
bound to the CL Aur close system. Our photometric study indicates that CL Aur
is a relatively short-period Algol-type binary with values of q=0.602 and
i=88.2. Mass transfer from the secondary to the primary eclipsing
component is at least partly responsible for the observed secular period change
with a rate of dP/dt = +1.4 d yr. A cool spot model has
been calculated but we think that an alternative hot-spot model resulting from
a gas stream impact on the hot star is more reasonable despite two difficulties
with the explanation. Absolute dimensions of the eclipsing system are deduced
and its present state is compared with tracks for single star and conservative
close binary evolution. Finally, we examine the possible reconciliation of two
different calculations of the luminosity of the hot spot and a
re-interpretation of the secular term of the period variability.Comment: 26 pages, including 5 figures and 9 tables, accepted for publication
in A
Recommended from our members
Two-billion-year-old evaporites capture Earth's great oxidation
Funding sources: Simons Foundation (SCOL 339006 to C.L.B.), European Research Council (ERC Horizon 2020 grant 678812 to M.C.), Research Council of Norway (RCN Centres of Excellence funding scheme project 223259 to K.P. and A.L.), Estonian Science Agency (PUT696 to K.K., A.L., K.P., T.K.).Major changes in atmospheric and ocean chemistry occurred in the Paleoproterozoic Era (2.5–1.6 billion years ago). Increasing oxidation dramatically changed Earth’s surface, but few quantitative constraints exist on this important transition. This study describes the sedimentology, mineralogy, and geochemistry of a remarkably preserved two-billion-year-old and ~800 meter-thick evaporite succession from the Onega Basin in Russian Karelia. The deposit consists of a basal unit dominated by halite (~100 m) followed by anhydrite-magnesite (~500 m) and dolomite-magnesite (~200 m) dominated units. The evaporite minerals robustly constraint marine sulfate concentrations to at least 10 millimoles per kilogram of water, representing an oxidant reservoir equivalent to over 20% of the modern ocean-atmosphere oxidizing capacity. These results show that substantial amounts of surface oxidant accumulated during this critical transition in Earth’s oxygenation.PostprintPeer reviewe
Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments
Shallow-water carbonate sediments constitute the bulk of sedimentary carbonates in the geologic record and are widely used archives of Earth’s chemical and climatic history. One of the main limitations in interpreting the geochemistry of ancient carbonate sediments is the potential for post-depositional diagenetic alteration. In this study, we use paired measurements of calcium (44Ca/40Ca or δ44Ca) and magnesium (26Mg/24Mg or δ26Mg) isotope ratios in sedimentary carbonates and associated pore-fluids as a tool to understand the mineralogical and diagenetic history of Neogene shallow-water carbonate sediments from the Bahamas and southwest Australia. We find that the Ca and Mg isotopic composition of bulk carbonate sediments at these sites exhibits systematic stratigraphic variability that is related to both mineralogy and early marine diagenesis. The observed variability in bulk sediment Ca isotopes is best explained by changes in the extent and style of early marine diagenesis from one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the fluid (fluid-buffered) to one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the precursor sediment (sediment-buffered). Our results indicate that this process, together with variations in carbonate mineralogy (aragonite, calcite, and dolomite), plays a fundamental and underappreciated role in determining the regional and global stratigraphic expressions of geochemical tracers (δ13C, δ18O, major, minor, and trace elements) in shallow-water carbonate sediments in the geologic record. Our results also provide evidence that a large shallow-water carbonate sink that is enriched in 44Ca can explain the mismatch between the δ44/40Ca value of rivers and deep-sea carbonate sediments and call into question the hypothesis that the δ44/40Ca value of seawater depends on the mineralogy of primary carbonate precipitations (e.g. ‘aragonite seas’ and ‘calcite seas’). Finally, our results for sedimentary dolomites suggest that paired measurements of Ca and Mg isotopes may provide a unique geochemical fingerprint of mass transfer during dolomitization to better understand the paleo-environmental information preserved in these enigmatic but widespread carbonate minerals
Do experts see it in slow motion? Altered timing of action simulation uncovers domain-specific perceptual processing in expert athletes
Accurate encoding of the spatio-temporal properties of others' actions is essential for the successful implementation of daily activities and, even more, for successful sportive performance, given its role in movement coordination and action anticipation. Here we investigated whether athletes are provided with special perceptual processing of spatio-temporal properties of familiar sportive actions. Basketball and volleyball players and novices were presented with short video-clips of free basketball throws that were partially occluded ahead of realization and were asked to judge whether a subsequently presented pose was either taken from the same throw depicted in the occluded video (action identification task) or temporally congruent with the expected course of the action during the occlusion period (explicit timing task). Results showed that basketball players outperformed the other groups in detecting action compatibility when the pose depicted earlier or synchronous, but not later phases of the movement as compared to the natural course of the action during occlusion. No difference was obtained for explicit estimations of timing compatibility. This leads us to argue that the timing of simulated actions in the experts might be slower than that of perceived actions ("slow-motion" bias), allowing for more detailed representation of ongoing actions and refined prediction abilities
Reproducibility and day time bias correction of optoelectronic leg volumetry: a prospective cohort study
Background
Leg edema is a common manifestation of various underlying pathologies. Reliable measurement tools are required to quantify edema and monitor therapeutic interventions. Aim of the present work was to investigate the reproducibility of optoelectronic leg volumetry over 3 weeks' time period and to eliminate daytime related within-individual variability.
Methods
Optoelectronic leg volumetry was performed in 63 hairdressers (mean age 45 ± 16 years, 85.7% female) in standing position twice within a minute for each leg and repeated after 3 weeks. Both lower leg (legBD) and whole limb (limbBF) volumetry were analysed. Reproducibility was expressed as analytical and within-individual coefficients of variance (CVA, CVW), and as intra-class correlation coefficients (ICC).
Results
A total of 492 leg volume measurements were analysed. Both legBD and limbBF volumetry were highly reproducible with CVA of 0.5% and 0.7%, respectively. Within-individual reproducibility of legBD and limbBF volumetry over a three weeks' period was high (CVW 1.3% for both; ICC 0.99 for both). At both visits, the second measurement revealed a significantly higher volume compared to the first measurement with a mean increase of 7.3 ml ± 14.1 (0.33% ± 0.58%) for legBD and 30.1 ml ± 48.5 ml (0.52% ± 0.79%) for limbBF volume. A significant linear correlation between absolute and relative leg volume differences and the difference of exact day time of measurement between the two study visits was found (P < .001). A therefore determined time-correction formula permitted further improvement of CVW.
Conclusions
Leg volume changes can be reliably assessed by optoelectronic leg volumetry at a single time point and over a 3 weeks' time period. However, volumetry results are biased by orthostatic and daytime-related volume changes. The bias for day-time related volume changes can be minimized by a time-correction formula
An Efficient Coding Hypothesis Links Sparsity and Selectivity of Neural Responses
To what extent are sensory responses in the brain compatible with first-order principles? The efficient coding hypothesis projects that neurons use as few spikes as possible to faithfully represent natural stimuli. However, many sparsely firing neurons in higher brain areas seem to violate this hypothesis in that they respond more to familiar stimuli than to nonfamiliar stimuli. We reconcile this discrepancy by showing that efficient sensory responses give rise to stimulus selectivity that depends on the stimulus-independent firing threshold and the balance between excitatory and inhibitory inputs. We construct a cost function that enforces minimal firing rates in model neurons by linearly punishing suprathreshold synaptic currents. By contrast, subthreshold currents are punished quadratically, which allows us to optimally reconstruct sensory inputs from elicited responses. We train synaptic currents on many renditions of a particular bird's own song (BOS) and few renditions of conspecific birds' songs (CONs). During training, model neurons develop a response selectivity with complex dependence on the firing threshold. At low thresholds, they fire densely and prefer CON and the reverse BOS (REV) over BOS. However, at high thresholds or when hyperpolarized, they fire sparsely and prefer BOS over REV and over CON. Based on this selectivity reversal, our model suggests that preference for a highly familiar stimulus corresponds to a high-threshold or strong-inhibition regime of an efficient coding strategy. Our findings apply to songbird mirror neurons, and in general, they suggest that the brain may be endowed with simple mechanisms to rapidly change selectivity of neural responses to focus sensory processing on either familiar or nonfamiliar stimuli. In summary, we find support for the efficient coding hypothesis and provide new insights into the interplay between the sparsity and selectivity of neural responses
Aerosols Transmit Prions to Immunocompetent and Immunodeficient Mice
Prions, the agents causing transmissible spongiform encephalopathies, colonize the brain of hosts after oral, parenteral, intralingual, or even transdermal uptake. However, prions are not generally considered to be airborne. Here we report that inbred and crossbred wild-type mice, as well as tga20 transgenic mice overexpressing PrPC, efficiently develop scrapie upon exposure to aerosolized prions. NSE-PrP transgenic mice, which express PrPC selectively in neurons, were also susceptible to airborne prions. Aerogenic infection occurred also in mice lacking B- and T-lymphocytes, NK-cells, follicular dendritic cells or complement components. Brains of diseased mice contained PrPSc and transmitted scrapie when inoculated into further mice. We conclude that aerogenic exposure to prions is very efficacious and can lead to direct invasion of neural pathways without an obligatory replicative phase in lymphoid organs. This previously unappreciated risk for airborne prion transmission may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories
Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection
In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles
- …