39 research outputs found

    Aceites esenciales: productos antimicrobianos y antioxidantes naturales en la industria agroalimentaria

    Get PDF
    [ES] Los consumidores son conscientes del peligro derivado del uso de antioxidantes y antimicrobianos sintéticos en la industria agroalimentaria, demandando alternativas más seguras y ecológicas. En este estudio, se ha determinado la actividad antioxidante de aceites esenciales comerciales mediante el método DPPH y su efecto antimicrobiano frente a la bacteria Pseudomonas syringae y el hongo fitopatógeno Fusarium oxysporum a través del empleo del método estandarizado de disco. Los aceites esenciales de clavo, ajedrea, canela y orégano, así como carvacrol, mostraron la máxima actividad antioxidante, comparable a antioxidantes establecidos. El aceite esencial de gaulteria fue el más potente inhibidor del crecimiento de P. syringae en las dosis más altas (20 y 10 µL) ensayadas. El aceite esencial de orégano, así como su componente principal carvacrol, detuvieron el crecimiento de la bacteria incluso a la dosis más baja ensayada (1 µL). Los aceites esenciales de canela, orégano y menta inhibieron el desarrollo de F. oxysporum en todas las dosis (20, 10 y 5 µL) aplicadas. En general, la mayoría de aceites esenciales mostraron más actividad antifúngica que antibacteriana y antioxidante.[EN] Consumers are aware of the dangers arising from the use of synthetic antioxidants and antimicrobials in the agrifood industry, demanding safer and "greener" alternatives. In this study, the antioxidant activity of commercial essential oils through DPPH method, their antimicrobial effects against the bacterium Pseudomonas syringae and the phytopathogenic fungus Fusarium oxysporum by means of the standardized disk method were determined. Clove along with winter savory, cinnamon and oregano essential oils as well as carvacrol showed the highest antioxidant activity comparable to reference standards. Wintergreen essential oil was the most potent inhibitor against P. syringae growth at the highest doses (20 and 10 µL). Oregano essential oil and its main component carvacrol were able to stop the bacterium growth even at the lowest treatment (1 µL). Cinnamon, oregano and peppermint essential oils inhibited F. oxysporum development at all doses (20, 10 and 5 µL) assayed. In general, most of the essential oils displayed more antifungal than antibacterial and antioxidant activities.Ibáñez, MD.; López-Gresa, MP.; Lisón, P.; Rodrigo Bravo, I.; Belles Albert, JM.; González-Mas, MC.; Blázquez, MA. (2020). Essential oils as natural antimicrobial and antioxidant products in the Agrifood Industry. Nereis. Revista Iberoamericana Interdisciplinar de Métodos, Modelización y Simulación. (12):55-69. https://doi.org/10.46583/nereis_2020.12.585S55691

    Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil

    Get PDF
    [EN] The bioherbicidal potential ofThymbra capitata(L.) Cav. essential oil (EO) and its main compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and seedling growth ofErigeron canadensisL.,Sonchus oleraceus(L.) L., andChenopodium albumL. at 0.125 mu L/mL, ofSetaria verticillata(L.) P.Beauv.,Avena fatuaL., andSolanum nigrumL. at 0.5 mu L/mL, ofAmaranthus retroflexusL. at 1 mu L/mL and ofPortulaca oleraceaL., andEchinochloa crus-galli(L.) P.Beauv. at 2 mu L/mL. Under greenhouse conditions,T. capitataEO was tested towards the emergent weeds from a soil seedbank in pre and post emergence, showing strong herbicidal potential in both assays at 4 mu L/mL. In addition,T. capitataEO, applied by spraying, was tested againstP. oleracea,A. fatuaandE. crus-galli. The species showed different sensibility to the EO, beingE. crus-gallithe most resistant. Experiments were performed againstA. fatuatestingT. capitataEO and carvacrol applied by spraying or by irrigation. It was verified that the EO was more active at the same doses in monocotyledons applied by irrigation and in dicotyledons applied by spraying. Carvacrol effects onArabidopsisroot morphology were also studied.This research was supported by the Universitat Politècnica de València [project number: SP20120543], by Generalitat Valenciana [project number GV/2014/039], and by the Spanish Ministry of Science, Innovation and Universities [project number: RTI2018¿094716¿B¿I00]. Thanks to Jovano Erris Nugroho and Muhamad Iqbal who collaborate to carry out in vivo experiment 4 during their internship in the Plant Health in Sustainable Cropping Systems Erasmus+ Programme. This research work has been developed as a result of a mobility stay funded by the Erasmus+-KA1 Erasmus Mundus Joint Master Degrees Programme of the European Commission under the PLANT HEALTH Project. Thanks to Xeda Italia S.r.l. for providing us Fitoil always when we need it. Thanks to Vicente Estornell Campos and the Library staff from Polytechnic University of Valencia that assisted us to get some helpful references.Verdeguer Sancho, MM.; Torres-Pagan, N.; Muñoz, M.; Jouini, A.; García-Plasencia, S.; Chinchilla, P.; Berbegal Martinez, M.... (2020). Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil. Molecules. 25(12):1-31. https://doi.org/10.3390/molecules25122832S1312512Barros, L., Heleno, S. A., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 43(3), 544-550. doi:10.1016/j.lwt.2009.09.024Goudjil, M. B., Zighmi, S., Hamada, D., Mahcene, Z., Bencheikh, S. E., & Ladjel, S. (2020). Biological activities of essential oils extracted from Thymus capitatus (Lamiaceae). South African Journal of Botany, 128, 274-282. doi:10.1016/j.sajb.2019.11.020Gagliano Candela, R., Maggi, F., Lazzara, G., Rosselli, S., & Bruno, M. (2019). The Essential Oil of Thymbra capitata and its Application as A Biocide on Stone and Derived Surfaces. Plants, 8(9), 300. doi:10.3390/plants8090300Tohidi, B., Rahimmalek, M., Arzani, A., & Sabzalian, M. R. (2020). Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chemistry, 307, 125521. doi:10.1016/j.foodchem.2019.125521Vladimir-Knežević, S., Blažeković, B., Kindl, M., Vladić, J., Lower-Nedza, A., & Brantner, A. (2014). Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family. Molecules, 19(1), 767-782. doi:10.3390/molecules19010767BRÄUCHLER, C. (2018). Delimitation and revision of the genus Thymbra (Lamiaceae). Phytotaxa, 369(1), 15. doi:10.11646/phytotaxa.369.1.2Paton, A. J., Springate, D., Suddee, S., Otieno, D., Grayer, R. J., Harley, M. M., … Savolainen, V. (2004). Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Molecular Phylogenetics and Evolution, 31(1), 277-299. doi:10.1016/j.ympev.2003.08.002Pastore, J. F. B., Harley, R. M., Forest, F., Paton, A., & van den Berg, C. (2011). Phylogeny of the subtribe Hyptidinae (Lamiaceae tribe Ocimeae) as inferred from nuclear and plastid DNA. TAXON, 60(5), 1317-1329. doi:10.1002/tax.605008Salmaki, Y., Zarre, S., Ryding, O., Lindqvist, C., Bräuchler, C., Heubl, G., … Bendiksby, M. (2013). Molecular phylogeny of tribe Stachydeae (Lamiaceae subfamily Lamioideae). Molecular Phylogenetics and Evolution, 69(3), 535-551. doi:10.1016/j.ympev.2013.07.024Salmaki, Y., Kattari, S., Heubl, G., & Bräuchler, C. (2016). Phylogeny of non-monophyletic Teucrium (Lamiaceae: Ajugoideae): Implications for character evolution and taxonomy. Taxon, 65(4), 805-822. doi:10.12705/654.8LI, B., & OLMSTEAD, R. G. (2017). Two new subfamilies in Lamiaceae. Phytotaxa, 313(2), 222. doi:10.11646/phytotaxa.313.2.9Bräuchler, C., Meimberg, H., & Heubl, G. (2010). Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) – Taxonomy, biogeography and conflicts. Molecular Phylogenetics and Evolution, 55(2), 501-523. doi:10.1016/j.ympev.2010.01.016World Checklist of Lamiaceae. Facilitated by the Royal Botanic Gardens, Kewhttp://wcsp.science.kew.orgHarley, R. M., Atkins, S., Budantsev, A. L., Cantino, P. D., Conn, B. J., Grayer, R., … Upson, T. (2004). Labiatae. Flowering Plants · Dicotyledons, 167-275. doi:10.1007/978-3-642-18617-2_11Miceli, A., Negro, C., & Tommasi, L. (2006). Essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Apulia (Italy). Biochemical Systematics and Ecology, 34(6), 528-535. doi:10.1016/j.bse.2005.12.010Delgado-Adámez, J., Garrido, M., Bote, M. E., Fuentes-Pérez, M. C., Espino, J., & Martín-Vertedor, D. (2017). Chemical composition and bioactivity of essential oils from flower and fruit of Thymbra capitata and Thymus species. Journal of Food Science and Technology, 54(7), 1857-1865. doi:10.1007/s13197-017-2617-5Alves, T. M. de A., Silva, A. F., Brandão, M., Grandi, T. S. M., Smânia, E. de F. A., Smânia Júnior, A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz, 95(3), 367-373. doi:10.1590/s0074-02762000000300012BOUNATIROU, S., SMITI, S., MIGUEL, M., FALEIRO, L., REJEB, M., NEFFATI, M., … PEDRO, L. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105(1), 146-155. doi:10.1016/j.foodchem.2007.03.059Nejad Ebrahimi, S., Hadian, J., Mirjalili, M. H., Sonboli, A., & Yousefzadi, M. (2008). Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food Chemistry, 110(4), 927-931. doi:10.1016/j.foodchem.2008.02.083Casiglia, S., Bruno, M., Scandolera, E., Senatore, F., & Senatore, F. (2019). Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arabian Journal of Chemistry, 12(8), 2704-2712. doi:10.1016/j.arabjc.2015.05.017Grayer, R. J., & Harborne, J. B. (1994). A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry, 37(1), 19-42. doi:10.1016/0031-9422(94)85005-4Kalemba, D., & Kunicka, A. (2003). Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10(10), 813-829. doi:10.2174/0929867033457719Ricci, D., Fraternale, D., Giamperi, L., Bucchini, A., Epifano, F., Burini, G., & Curini, M. (2005). Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). Journal of Ethnopharmacology, 98(1-2), 195-200. doi:10.1016/j.jep.2005.01.022Al-Mustafa, A. H., & Al-Thuniba, O. Y. (2008). Antioxidant Activity of Some Jordanian Medicinal Plants Used Traditionally for Treatment of Diabetes. Pakistan Journal of Biological Sciences, 11(3), 351-358. doi:10.3923/pjbs.2008.351.358Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines, 3(4), 25. doi:10.3390/medicines3040025Ruberto, G., Biondi, D., & Piattelli, M. (1992). The Essential Oil of SicilianThymus capitatus(L.) Hoffmanns, et Link. Journal of Essential Oil Research, 4(4), 417-418. doi:10.1080/10412905.1992.9698094Saija, A., Speciale, A., Trombetta, D., Leto, C., Tuttolomondo, T., La Bella, S., … Ruberto, G. (2016). Phytochemical, Ecological and Antioxidant Evaluation of Wild Sicilian Thyme: Thymbra capitata (L.) Cav . Chemistry & Biodiversity, 13(12), 1641-1655. doi:10.1002/cbdv.201600072Arras, G., & Grella, G. E. (1992). Wild thyme,Thymus capitatus, essential oil seasonal changes and antimycotic activity. Journal of Horticultural Science, 67(2), 197-202. doi:10.1080/00221589.1992.11516237Tommasi, L., Negro, C., Cerfeda, A., Nutricati, E., Zuccarello, V., De Bellis, L., & Miceli, A. (2007). Influence of Environmental Factors on Essential Oil Variability inThymbra capitata(L.) Cav. Growing Wild in Southern Puglia (Italy). Journal of Essential Oil Research, 19(6), 572-580. doi:10.1080/10412905.2007.9699335Salas, J. B., Téllez, T. R., Alonso, M. J. P., Pardo, F. M. V., de los Ángeles Cases Capdevila, M., & Rodríguez, C. G. (2010). Chemical composition and antioxidant activity of the essential oil ofThymbra capitata(L.) Cav. in Spain. Acta Botanica Gallica, 157(1), 55-63. doi:10.1080/12538078.2010.10516189Rodrigues, L. S., Monteiro, P., Maldoa-Martins, M., Monteiro, A., Povoa, O., & Teixeira, G. (2006). BIODIVERSITY STUDIES ON PORTUGUESE THYMBRA CAPITATA. Acta Horticulturae, (723), 127-132. doi:10.17660/actahortic.2006.723.13El Hadj Ali, I. B., Guetat, A., & Boussaid, M. (2012). Variation of Volatiles in Tunisian Populations of Thymbra capitata (L.) Cav. (Lamiaceae). Chemistry & Biodiversity, 9(7), 1272-1285. doi:10.1002/cbdv.201100344Katz, D. A., Sneh, B., & Friedman, J. (1987). The allelopathic potential ofCoridothymus capitatus L. (Labiatae). Preliminary studies on the roles of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes. Plant and Soil, 98(1), 53-66. doi:10.1007/bf02381727Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., & Lerner, H. R. (1999). Journal of Chemical Ecology, 25(5), 1079-1089. doi:10.1023/a:1020881825669Saoud, I., Hamrouni, L., Gargouri, S., Amri, I., Hanana, M., Fezzani, T., … Jamoussi, B. (2013). Chemical composition, weed killer and antifungal activities of Tunisian thyme (Thymus capitatusHoff. et Link.) essential oils. Acta Alimentaria, 42(3), 417-427. doi:10.1556/aalim.42.2013.3.15Chaimovitsh, D., Shachter, A., Abu-Abied, M., Rubin, B., Sadot, E., & Dudai, N. (2016). Herbicidal Activity of Monoterpenes Is Associated with Disruption of Microtubule Functionality and Membrane Integrity. Weed Science, 65(1), 19-30. doi:10.1614/ws-d-16-00044.1Verdeguer, M., Castañeda, L. G., Torres-Pagan, N., Llorens-Molina, J. A., & Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules, 25(3), 562. doi:10.3390/molecules25030562Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., & Guillemin, J.-P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44-49. doi:10.1016/j.cropro.2016.04.016Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of Pesticides on Environment. Plant, Soil and Microbes, 253-269. doi:10.1007/978-3-319-27455-3_13Harker, K. N., & O’Donovan, J. T. (2013). Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technology, 27(1), 1-11. doi:10.1614/wt-d-12-00109.1Olson, S. (2015). An Analysis of the Biopesticide Market Now and Where it is Going. Outlooks on Pest Management, 26(5), 203-206. doi:10.1564/v26_oct_04Santamarina, M., Ibáñez, M., Marqués, M., Roselló, J., Giménez, S., & Blázquez, M. (2017). Bioactivity of essential oils in phytopathogenic and post-harvest fungi control. Natural Product Research, 31(22), 2675-2679. doi:10.1080/14786419.2017.1286479Tuttolomondo, T., Dugo, G., Leto, C., Cicero, N., Tropea, A., Virga, G., … La Bella, S. (2015). Agronomical and chemical characterisation ofThymbra capitata(L.) Cav. biotypes from Sicily, Italy. Natural Product Research, 29(14), 1289-1299. doi:10.1080/14786419.2014.997726Miguel, M. G., Gago, C., Antunes, M. D., Megías, C., Cortés-Giraldo, I., Vioque, J., … Figueiredo, A. C. (2015). Antioxidant and Antiproliferative Activities of the Essential Oils fromThymbra capitataandThymusSpecies Grown in Portugal. Evidence-Based Complementary and Alternative Medicine, 2015, 1-8. doi:10.1155/2015/851721Karousou, R., Koureas, D. N., & Kokkini, S. (2005). Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Phytochemistry, 66(22), 2668-2673. doi:10.1016/j.phytochem.2005.09.020Vasilakoglou, I., Dhima, K., Paschalidis, K., & Ritzoulis, C. (2013). Herbicidal potential onLolium rigidumof nineteen major essential oil components and their synergy. Journal of Essential Oil Research, 25(1), 1-10. doi:10.1080/10412905.2012.751054Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423-430. doi:10.1016/j.ecoenv.2017.04.041Pinheiro, P. F., Costa, A. V., Alves, T. de A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., … Fontes, M. M. P. (2015). Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays. Journal of Agricultural and Food Chemistry, 63(41), 8981-8990. doi:10.1021/acs.jafc.5b03049Tworkoski, T. (2002). Herbicide effects of essential oils. Weed Science, 50(4), 425-431. doi:10.1614/0043-1745(2002)050[0425:heoeo]2.0.co;2Benvenuti, S., Cioni, P. L., Flamini, G., & Pardossi, A. (2017). Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Research, 57(5), 342-353. doi:10.1111/wre.12266N. MALPASSI, R. (2006). Herbicide effects on cuticle ultrastructure in Eleusine indica and Portulaca oleracea. BIOCELL, 30(1), 51-56. doi:10.32604/biocell.2006.30.051Schreiber, L. (1995). A mechanistic approach towards surfactant/wax interactions: Effects of octaethyleneglycolmonododecylether on sorption and diffusion of organic chemicals in reconstituted cuticular wax of barley leaves. Pesticide Science, 45(1), 1-11. doi:10.1002/ps.2780450102Hull, H. M., Morton, H. L., & Wharrie, J. R. (1975). Environmental influences on cuticle development and resultant foliar penetration. The Botanical Review, 41(4), 421-452. doi:10.1007/bf02860832Kern, A. J., Jackson, L. L., & Dyer, W. E. (1997). Fatty acid and wax biosynthesis in susceptible and triallate-resistantAvena fatuaL. Pesticide Science, 51(1), 21-26. doi:10.1002/(sici)1096-9063(199709)51:13.0.co;2-9SANYAL, D., BHOWMIK, P. C., & REDDY, K. N. (2008). Effects of surfactants on primisulfuron activity in barnyardgrass (Echinochloa crus-galli [L.] Beauv.) and green foxtail (Setaria viridis [L.] Beauv.). Weed Biology and Management, 8(1), 46-53. doi:10.1111/j.1445-6664.2007.00273.xPrinciples of Soil and Plant Water Relations. (2014). doi:10.1016/c2013-0-12871-1Kim, H. K., Park, J., & Hwang, I. (2014). Investigating water transport through the xylem network in vascular plants. Journal of Experimental Botany, 65(7), 1895-1904. doi:10.1093/jxb/eru075Norris, R. F. (1974). PENETRATION OF 2,4-D IN RELATION TO CUTICLE THICKNESS. American Journal of Botany, 61(1), 74-79. doi:10.1002/j.1537-2197.1974.tb06029.xSchönherr, J., & Riederer, M. (1989). Foliar Penetration and Accumulation of Organic Chemicals in Plant Cuticles. Reviews of Environmental Contamination and Toxicology, 1-70. doi:10.1007/978-1-4613-8850-0_1GOURET, E., ROHR, R., & CHAMEL, A. (1993). Ultrastructure and chemical composition of some isolated plant cuticles in relation to their permeability to the herbicide, diuron. New Phytologist, 124(3), 423-431. doi:10.1111/j.1469-8137.1993.tb03832.xRiederer, M., & Schönherr, J. (1985). Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles. Ecotoxicology and Environmental Safety, 9(2), 196-208. doi:10.1016/0147-6513(85)90022-3Melo, C. R., Picanço, M. C., Santos, A. A., Santos, I. B., Pimentel, M. F., Santos, A. C. C., … Bacci, L. (2018). Toxicity of essential oils of Lippia gracilis chemotypes and their major compounds on Diaphania hyalinata and non-target species. Crop Protection, 104, 47-51. doi:10.1016/j.cropro.2017.10.013Araniti, F., Graña, E., Krasuska, U., Bogatek, R., Reigosa, M. J., Abenavoli, M. R., & Sánchez-Moreiras, A. M. (2016). Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance. PLOS ONE, 11(8), e0160202. doi:10.1371/journal.pone.0160202Smyth, D. R. (2016). Helical growth in plant organs: mechanisms and significance. Development, 143(18), 3272-3282. doi:10.1242/dev.134064Graña, E., Costas-Gil, A., Longueira, S., Celeiro, M., Teijeira, M., Reigosa, M. J., & Sánchez-Moreiras, A. M. (2017). Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. Journal of Plant Physiology, 218, 45-55. doi:10.1016/j.jplph.2017.07.007Verbelen, J.-P., Le, J., Vissenberg, K., De Cnodder, T., Vandenbussche, F., Sugimoto, K., & Van Der Straeten, D. (2008). Microtubules And The Control Of Cell Elongation In Arabidopsis Roots. NATO Science for Peace and Security Series C: Environmental Security, 73-90. doi:10.1007/978-1-4020-8843-8_4Blume, Y. B., Krasylenko, Y. A., & Yemets, A. I. (2012). Effects of phytohormones on the cytoskeleton of the plant cell. Russian Journal of Plant Physiology, 59(4), 515-529. doi:10.1134/s1021443712040036López-González, D., Costas-Gil, A., Reigosa, M. J., Araniti, F., & Sánchez-Moreiras, A. M. (2020). A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiology and Biochemistry, 151, 378-390. doi:10.1016/j.plaphy.2020.03.047The International Herbicide-Resistant Weed Databasewww.weedscience.orgAngelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., & Flamini, G. (2003). Essential Oils from Mediterranean Lamiaceae as Weed Germination Inhibitors. Journal of Agricultural and Food Chemistry, 51(21), 6158-6164. doi:10.1021/jf0210728DÍAZ-TIELAS, C., GRAÑA, E., SOTELO, T., REIGOSA, M. J., & SÁNCHEZ-MOREIRAS, A. M. (2012). The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant, Cell & Environment, 35(8), 1500-1517. doi:10.1111/j.1365-3040.2012.02506.

    Flipped classroom en el aprendizaje multidisciplinar colaborativo en diferentes Grados Universitarios

    Get PDF
    La implementación de nuevas metodologías que nos permita valorar si el estudiante ha alcanzado los conocimientos necesarios así como una serie de competencias y habilidades, es una de las prioridades docentes del proceso de convergencia en el espacio europeo de educación superior. El empleo de la clase inversa (flipped classroom) con el cambio en los roles aula/casa y profesor/estudiante consigue que el estudiante adquiera un papel protagonista en el proceso de la enseñanza, alcanzando destrezas en el aprendizaje autónomo, trabajo en equipo y empleo de las nuevas tecnologías. Al mismo tiempo, esta metodología hace posible la participación de estudiantes de distintos grados que trabajen en grupos temas relacionados con su titulación, así como la consecución de competencias básicas (que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado), generales (capacidad para las relaciones interpersonales y el trabajo en equipo) y específicas. Esta experiencia piloto tiene como objetivo mejorar el proceso enseñanza-aprendizaje de los estudiantes del grado en farmacia, grado en ingeniería agroalimentaria y medio rural y grado en biotecnología, mediante la implementación de la metodología flipped classroom para potenciar el aprendizaje autónomo, desarrollo de competencias cognitivas y habilidades interpersonales de comunicación

    Traumatic stress symptoms among Spanish healthcare workers during the COVID-19 pandemic: a prospective study

    Get PDF
    Abstract Aim To investigate the occurrence of traumatic stress symptoms (TSS) among healthcare workers active during the COVID-19 pandemic and to obtain insight as to which pandemic-related stressful experiences are associated with onset and persistence of traumatic stress. Methods This is a multicenter prospective cohort study. Spanish healthcare workers (N = 4,809) participated at an initial assessment (i.e., just after the first wave of the Spain COVID-19 pandemic) and at a 4-month follow-up assessment using web-based surveys. Logistic regression investigated associations of 19 pandemic-related stressful experiences across four domains (infection-related, work-related, health-related and financial) with TSS prevalence, incidence and persistence, including simulations of population attributable risk proportions (PARP). Results Thirty-day TSS prevalence at T1 was 22.1%. Four-month incidence and persistence were 11.6% and 54.2%, respectively. Auxiliary nurses had highest rates of TSS prevalence (35.1%) and incidence (16.1%). All 19 pandemic-related stressful experiences under study were associated with TSS prevalence or incidence, especially experiences from the domains of health-related (PARP range 88.4–95.6%) and work-related stressful experiences (PARP range 76.8–86.5%). Nine stressful experiences were also associated with TSS persistence, of which having patient(s) in care who died from COVID-19 had the strongest association. This association remained significant after adjusting for co-occurring depression and anxiety. Conclusions TSSs among Spanish healthcare workers active during the COVID-19 pandemic are common and associated with various pandemic-related stressful experiences. Future research should investigate if these stressful experiences represent truly traumatic experiences and carry risk for the development of post-traumatic stress disorder

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≥ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≥ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≥80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≥80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≥80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≥80 years; p = 0.003).Independent predictors of mortality were age ≥ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≥ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    Time to Switch to Second-line Antiretroviral Therapy in Children With Human Immunodeficiency Virus in Europe and Thailand.

    Get PDF
    Background: Data on durability of first-line antiretroviral therapy (ART) in children with human immunodeficiency virus (HIV) are limited. We assessed time to switch to second-line therapy in 16 European countries and Thailand. Methods: Children aged <18 years initiating combination ART (≥2 nucleoside reverse transcriptase inhibitors [NRTIs] plus nonnucleoside reverse transcriptase inhibitor [NNRTI] or boosted protease inhibitor [PI]) were included. Switch to second-line was defined as (i) change across drug class (PI to NNRTI or vice versa) or within PI class plus change of ≥1 NRTI; (ii) change from single to dual PI; or (iii) addition of a new drug class. Cumulative incidence of switch was calculated with death and loss to follow-up as competing risks. Results: Of 3668 children included, median age at ART initiation was 6.1 (interquartile range (IQR), 1.7-10.5) years. Initial regimens were 32% PI based, 34% nevirapine (NVP) based, and 33% efavirenz based. Median duration of follow-up was 5.4 (IQR, 2.9-8.3) years. Cumulative incidence of switch at 5 years was 21% (95% confidence interval, 20%-23%), with significant regional variations. Median time to switch was 30 (IQR, 16-58) months; two-thirds of switches were related to treatment failure. In multivariable analysis, older age, severe immunosuppression and higher viral load (VL) at ART start, and NVP-based initial regimens were associated with increased risk of switch. Conclusions: One in 5 children switched to a second-line regimen by 5 years of ART, with two-thirds failure related. Advanced HIV, older age, and NVP-based regimens were associated with increased risk of switch

    Control of Portulaca oleracea by boldo and lemon essential oils in different soils

    No full text
    Soil characteristics influence plant growth and can affect the phytotoxicity of the essential oils. In this study chemical composition and herbicidal activity of Peumus boldus Mol. and lemon essential oils in different growing medium against Portulaca oleracea L. was investigated. Ninety-four compounds accounting between 95.5 and 99.8% of the total essential oil were identified by gas chromatography-mass spectrometry in boldo and lemon essential oils. Ascaridole (31.56. ±. 0.15%), p-cymene (21.58. ±. 0.09%) and 1,8-cineole (12.57. ±. 0.13%) were the main compounds in P. boldus whereas large amount of limonene (59.28%) followed of β-pinene (12.96%) and γ-terpinene (10.92%) were found in lemon essential oil. The herbicidal test showed that at 0.5 and 1. μL/mL of P. boldus essential oil the seed germination of P. oleraceae was completely inhibited in soilless culture. At relative lower concentration (0.250. μL/mL) P. boldus essential oil only showed significant effect in clay and sand textures, being the lowest concentration applied (0.125. μL/mL) effective in soils with more clay content. Lemon essential oil did not show any effect against P. oleracea seed germination in both soilless and soil cultures. The results suggest that P. boldus essential oil could be used as potential herbicide to control P. oleracea in different soil types. © 2015 Elsevier B.V.This research was partially supported by Accion Especial Gesbemed 20111067 financed by University of Valencia.Peer Reviewe

    Aceites esenciales: indicadores de calidad de especias en supermercados

    No full text
    Chemical composition of oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and thyme (Thymus vulgaris L.) essential oils traded as spices at supermarkets was determined by Gas-Chromatography-Mass Spectrometry analysis. One hundred-five compounds accounting for 84-98% of the total essential oils were identified. Significant differences were found in both yield and chemical composition of spice essential oils and the trademarks employed. Oxygenated monoterpenes (51.58-95.39 %) were the principal fraction in all analyzed essential oils. Thymol was the main compound in oregano (79.53 and 27.87 %) and thyme (30.70 and 18.74 %) essential oils followed by carvacrol (15.42 %) or terpinen-4-ol (9.97 %) in oregano trademarks and carvacrol (19.59 %) or borneol (18.00 %) in thyme trademarks. 1,8-cineole (36.74 and 47.39 %) and camphor (20.78 and 15.96 %) were the main compounds in commercial rosemary food items. Large differences in the amount of the main bioactive compounds that can affect both aroma and health benefits are found in the analyzed trademarks.Se ha determinado la composición química de los aceites esenciales de orégano (Origanum vulgare L.), romero (Rosmarinus officinalis L.) y tomillo (Thymus vulgaris L.) comercializados como especias en supermercados de alimentación, mediante su análisis por Cromatografía de Gases-Espectrometría de Masas. Se identificaron ciento cinco compuestos que representaron entre el 84 y el 98 % de la composición total de los aceites esenciales. Se observaron diferencias significativas tanto en el rendimiento como en la composición química de los aceites esenciales de las especias y marcas comerciales empleadas. Los monoterpenos oxigenados (51,58-95,39 %) fueron la fracción principal en todos los aceites esenciales analizados. Timol fue el componente mayoritario en los aceites esenciales de orégano (79,53 y 27,87 %) y tomillo (30,70 y 18,74 %) seguido de carvacrol (15,42 %) o terpinen-4-ol (9,97 %) en las marcas comerciales de orégano y carvacrol (19,59 %) o borneol (18,00 %) en las de tomillo. 1,8-cineol (36,74 y 47,39 %) y alcanfor (20,78 y 15,96 %) fueron los componentes mayoritarios de los productos comerciales de romero. En las marcas comerciales analizadas se encontraron grandes diferencias cuantitativas en los principales compuestos bioactivos que pueden modificar tanto el aroma como sus efectos beneficiosos para la salud.Nutrición humana y dietétic

    Estandarización de aceites esenciales de canela comercial mediante análisis por cromatografía de gases-espectrometría de masas

    No full text
    The chemical composition of seven Cinnamomum zeylanicum Blume essential oils traded as spices and medicinal items has been determined by gas chromatography-mass spectrometry analysis. Eighty-two compounds accounting for 95.39-99.03% of the total essential oil were identified. Qualitative and quantitative differences were found in the essential oils obtained from dried and powdered cinnamon bark purchased at supermarkets and cinnamon leaf essential oil from a pharmacy. The aromatic compound E-cinnamaldehyde (67.84±3.15%; 67.16±5.05%) was the principal component of the essential oil in commercial cinnamon bark employed as a spice; whereas eugenol was the main compound (81.51±0.21%), in commercial cinnamon leaf essential oil for medicinal purposes. The qualitative and quantitative differences in the analyzed essential oils can affect the organoleptic properties, mainly the spice’s flavor as well as the pharmacological properties of the cinnamon (bark and leaf ) essential oils.Se ha determinado la composición química de siete aceites esenciales de Cinnamomum zeylanicum Blume comercializados como especias y con fines medicinales, mediante cromatografía de gases-espectrometría de masas. Se identificaron un total de ochenta y dos compuestos que representaron entre 95,39-99,03% de la composición total del mismo. Se observaron diferencias tanto cualitativas como cuantitativas entre los aceites esenciales obtenidos de corteza seca y pulverizada de canela de venta en supermercados de alimentación y el aceite esencial de canela procedente de una farmacia. El compuesto aromático E-cinamaldehído (67,84±3,15%; 67,16±5,05%), fue el principal componente de la corteza de canela utilizada como especia, mientras que eugenol (81,51±0,21%) fue el compuesto mayoritario del aceite esencial de hoja de canela con fines medicinales. Las diferencias cualitativas y cuantitativas encontradas en la composición de los aceites esenciales analizados, pueden afectar tanto a las propiedades organolépticas, fundamentalmente al aroma de las especias, como a las propiedades farmacológicas de los aceites esenciales (corteza y hoja) de canela.Ciencias Experimentale

    What future for organic farming? Foresight for a smallholder Mediterranean agricultural system

    No full text
    Abstract This study aims to foresee the future of organic farming in the smallholder agricultural systems of the Valencian Region (Spain), as well as to identify how different drivers of change may affect such a future. To do so, two qualitative methodologies were combined: The Delphi method and the participatory scenario development. The results estimate an upward trend for organic farming area and sales, which would contribute to a greener and more sustainable economy in the region, a slight drop in organic versus conventional food prices, the entrance of large operators and a “dualisation” of the models of production and consumption of organic food. The key role that the public sector plays for the future of organic farming is underlined by the stakeholders, who suggest that the civil society may counterbalance the lack of public support by way of collective action and an increasing awareness about health and sustainability. This study concludes by highlighting the main findings obtained, both regarding the expected evolution of organic agriculture in the region and the key factors that would influence such evolution, emphasising the applicability of the results to other similar smallholder Mediterranean farming systems
    corecore