51 research outputs found

    New Factorization Relations for Yang Mills Amplitudes

    Get PDF
    A double-cover extension of the scattering equation formalism of Cachazo, He and Yuan (CHY) leads us to conjecture covariant factorization formulas of n-particle scattering amplitudes in Yang-Mills theories. Evidence is given that these factorization relations are related to Berends-Giele recursions through repeated use of partial fraction identities involving linearized propagators.Comment: 7 pages, 3 figures, version to appear in PR

    Unusual identities for QCD at tree-level

    Full text link
    We discuss a set of recently discovered quadratic relations between gauge theory amplitudes. Such relations give additional structural simplifications for amplitudes in QCD. Remarkably, their origin lie in an analogous set of relations that involve also gravitons. When certain gluon helicities are flipped we obtain relations that do not involve gravitons, but which refer only to QCD.Comment: Talk given at XIV Mexican School on Particles and Fields, Morelia, Nov. 201

    Manifesting Color-Kinematics Duality in the Scattering Equation Formalism

    Get PDF
    We prove that the scattering equation formalism for Yang-Mills amplitudes can be used to make manifest the theory's color-kinematics duality. This is achieved through a concrete reduction algorithm which renders this duality manifest term-by-term. The reduction follows from the recently derived set of identities for amplitudes expressed in the scattering equation formalism that are analogous to monodromy relations in string theory. A byproduct of our algorithm is a generalization of the identities among gravity and Yang-Mills amplitudes.Comment: 20 pages, 20 figure

    Analytic Representations of Yang-Mills Amplitudes

    Get PDF
    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.Comment: 29 pages, 43 figures; also included is a Mathematica notebook with explicit formulae. v2: citations added, and several (important) typos fixe

    Scattering Equations and Feynman Diagrams

    Get PDF
    We show a direct matching between individual Feynman diagrams and integration measures in the scattering equation formalism of Cachazo, He and Yuan. The connection is most easily explained in terms of triangular graphs associated with planar Feynman diagrams in ϕ3\phi^3-theory. We also discuss the generalization to general scalar field theories with ϕp\phi^p interactions, corresponding to polygonal graphs involving vertices of order pp. Finally, we describe how the same graph-theoretic language can be used to provide the precise link between individual Feynman diagrams and string theory integrands.Comment: 18 pages, 57 figure

    Gravity and Yang-Mills Amplitude Relations

    Full text link
    Using only general features of the S-matrix and quantum field theory, we prove by induction the Kawai-Lewellen-Tye relations that link products of gauge theory amplitudes to gravity amplitudes at tree level. As a bonus of our analysis, we provide a novel and more symmetric form of these relations. We also establish an infinite tower of new identities between amplitudes in gauge theories.Comment: 4 pages, REVTeX, minor typos corrected and references added. Published versio

    Integration Rules for Loop Scattering Equations

    Get PDF
    We formulate new integration rules for one-loop scattering equations analogous to those at tree-level, and test them in a number of non-trivial cases for amplitudes in scalar ϕ3\phi^3-theory. This formalism greatly facilitates the evaluation of amplitudes in the CHY representation at one-loop order, without the need to explicitly sum over the solutions to the loop-level scattering equations.Comment: 22 pages, 17 figure

    Integration Rules for Scattering Equations

    Get PDF
    As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any M\"obius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.Comment: 30 pages, 29 figure

    Minimal Basis for Gauge Theory Amplitudes

    Full text link
    Identities based on monodromy for integrations in string theory are used to derive relations between different color ordered tree-level amplitudes in both bosonic and supersymmetric string theory. These relations imply that the color ordered tree-level n-point gauge theory amplitudes can be expanded in a minimal basis of (n-3)! amplitudes. This result holds for any choice of polarizations of the external states and in any number of dimensions.Comment: v2: typos corrected, some rephrasing of the general discussion. Captions to figures added. Version to appear in PRL. 4 pages, 5 figure

    Post-Minkowskian Scattering Angle in Einstein Gravity

    Get PDF
    Using the implicit function theorem we demonstrate that solutions to the classical part of the relativistic Lippmann-Schwinger equation are in one-to-one correspondence with those of the energy equation of a relativistic two-body system. A corollary is that the scattering angle can be computed from the amplitude itself, without having to introduce a potential. All results are universal and provide for the case of general relativity a very simple formula for the scattering angle in terms of the classical part of the amplitude, to any order in the post-Minkowskian expansion.Comment: 24 pages, minor corrections, published version to appear in JHE
    corecore