78 research outputs found

    The USER cloning standard

    Get PDF
    This BioBricks Foundation Request for Comments (BBF RFC) provides information about the design of uracil-containing primers used for USER cloning and USER fusion

    Linking Metabolic QTLs with Network and cis-eQTLs Controlling Biosynthetic Pathways

    Get PDF
    Phenotypic variation between individuals of a species is often under quantitative genetic control. Genomic analysis of gene expression polymorphisms between individuals is rapidly gaining popularity as a way to query the underlying mechanistic causes of variation between individuals. However, there is little direct evidence of a linkage between global gene expression polymorphisms and phenotypic consequences. In this report, we have mapped quantitative trait loci (QTLs)–controlling glucosinolate content in a population of 403 Arabidopsis Bay × Sha recombinant inbred lines, 211 of which were previously used to identify expression QTLs controlling the transcript levels of biosynthetic genes. In a comparative study, we have directly tested two plant biosynthetic pathways for association between polymorphisms controlling biosynthetic gene transcripts and the resulting metabolites within the Arabidopsis Bay × Sha recombinant inbred line population. In this analysis, all loci controlling expression variation also affected the accumulation of the resulting metabolites. In addition, epistasis was detected more frequently for metabolic traits compared to transcript traits, even when both traits showed similar distributions. An analysis of candidate genes for QTL-controlling networks of transcripts and metabolites suggested that the controlling factors are a mix of enzymes and regulatory factors. This analysis showed that regulatory connections can feedback from metabolism to transcripts. Surprisingly, the most likely major regulator of both transcript level for nearly the entire pathway and aliphatic glucosinolate accumulation is variation in the last enzyme in the biosynthetic pathway, AOP2. This suggests that natural variation in transcripts may significantly impact phenotypic variation, but that natural variation in metabolites or their enzymatic loci can feed back to affect the transcripts

    PHUSER (Primer Help for USER): a novel tool for USER fusion primer design

    Get PDF
    Uracil-Specific Exision Reagent (USER) fusion is a recently developed technique that allows for assembly of multiple DNA fragments in a few simple steps. However, designing primers for USER fusion is both tedious and time consuming. Here, we present the Primer Help for USER (PHUSER) software, a novel tool for designing primers specifically for USER fusion and USER cloning applications. We also present proof-of-concept experimental validation of its functionality. PHUSER offers quick and easy design of PCR optimized primers ensuring directionally correct fusion of fragments into a plasmid containing a customizable USER cassette. Designing primers using PHUSER ensures that the primers have similar annealing temperature (Tm), which is essential for efficient PCR. PHUSER also avoids identical overhangs, thereby ensuring correct order of assembly of DNA fragments. All possible primers are individually analysed in terms of GC content, presence of GC clamp at 3′-end, the risk of primer dimer formation, the risk of intra-primer complementarity (secondary structures) and the presence of polyN stretches. Furthermore, PHUSER offers the option to insert linkers between DNA fragments, as well as highly flexible cassette options. PHUSER is publicly available at http://www.cbs.dtu.dk/services/phuser/

    A Versatile System for USER Cloning-Based Assembly of Expression Vectors for Mammalian Cell Engineering

    Get PDF
    A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique--USER cloning--to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors

    <em>Aspergillus nidulans</em> Synthesize Insect Juvenile Hormones upon Expression of a Heterologous Regulatory Protein and in Response to Grazing by <em>Drosophila melanogaster</em> Larvae.

    Get PDF
    Secondary metabolites are known to serve a wide range of specialized functions including communication, developmental control and defense. Genome sequencing of several fungal model species revealed that the majority of predicted secondary metabolite related genes are silent in laboratory strains, indicating that fungal secondary metabolites remain an underexplored resource of bioactive molecules. In this study, we combine heterologous expression of regulatory proteins in Aspergillus nidulans with systematic variation of growth conditions and observe induced synthesis of insect juvenile hormone-III and methyl farnesoate. Both compounds are sesquiterpenes belonging to the juvenile hormone class. Juvenile hormones regulate developmental and metabolic processes in insects and crustaceans, but have not previously been reported as fungal metabolites. We found that feeding by Drosophila melanogaster larvae induced synthesis of juvenile hormone in A. nidulans indicating a possible role of juvenile hormone biosynthesis in affecting fungal-insect antagonisms
    corecore