1,147 research outputs found

    The universal influence of contact resistance on the efficiency of a thermoelectric generator

    Get PDF
    The influence of electrical and thermal contact resistance on the efficiency of a segmented thermoelectric generator is investigated. We consider 12 different segmented pp-legs and 12 different segmented nn-legs, using 8 different pp-type and 8 different nn-type thermoelectric materials. For all systems a universal influence of both the electrical and thermal contact resistance is observed on the leg's efficiency, when the systems are analyzed in terms of the contribution of the contact resistance to the total resistance of the leg. The results are compared with the analytical model of Min and Rowe (1992). In order for the efficiency not to decrease more than 20%, the contact electrical resistance should be less than 30% of the total leg resistance for zero thermal contact resistance, while the thermal contact resistance should be less than 20% for zero electrical contact resistance. The universal behavior also allowed the maximum tolerable contact resistance for a segmented system to be found, i.e. the resistance at which a leg of only the high temperature thermoelectric material has the same efficiency as the segmented leg with a contact resistance at the interface. If e.g. segmentation increases the efficiency by 30% then an electrical contact resistance of 30% or a thermal contact resistance of 20% can be tolerated.Comment: 8 pages, 8 figure

    An analytical model for the influence of contact resistance on thermoelectric efficiency

    Get PDF
    An analytical model is presented that can account for both electrical and hot and cold thermal contact resistances when calculating the efficiency of a thermoelectric generator. The model is compared to a numerical model of a thermoelectric leg, for 16 different thermoelectric materials, as well as the analytical models of Ebling et. al. (2010) and Min \& Rowe (1992). The model presented here is shown to accurately calculate the efficiency for all systems and all contact resistances considered, with an average difference in efficiency between the numerical model and the analytical model of 0.07±0.35-0.07\pm0.35 pp. This makes the model more accurate than previously published models. The maximum absolute difference in efficiency between the analytical model and the numerical model is 1.14 pp for all materials and all contact resistances considered.Comment: 8 pages, 5 figure

    The demagnetization factor for randomly packed spheroidal particles

    Full text link
    We investigate if the demagnetization factor for a randomly packed powder of magnetic spheroidal particles depend on the shape of the spheroidal particles and what the internal variation in magnetization is within such a powder. A spheroid is an ellipsoid of revolution, i.e. an ellipsoid with two semi-major axis being equal. The demagnetization factor is calculated as function of particle aspect ratio using two independent numerical models for several different packings, and assuming a relative permeability of 2. The calculated demagnetization factor is shown to depend on particle aspect ratio, not because of direct magnetic interaction but because the particle packing depend on the aspect ratio of the particles. The relative standard deviation of the magnetization across the powder was 3\%-8\%, increasing as the particle shape deviates from spherical, while the relative standard deviation within each particle was relatively constant around 5\%.Comment: 7 pages, 9 figure

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    Get PDF
    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.Comment: 10 pages, 6 figure

    The maximum theoretical performance of unconcentrated solar photovoltaic and thermoelectric generator systems

    Full text link
    The maximum efficiency for photovoltaic (PV) and thermoelectric generator (TEG) systems without concentration is investigated. Both a combined system where the TEG is mounted directly on the back of the PV and a tandem system where the incoming sunlight is split, and the short wavelength radiation is sent to the PV and the long wavelength to the TEG, are considered. An analytical model based on the Shockley-Queisser efficiency limit for PVs and the TEG figure of merit parameter zTzT is presented. It is shown that for non-concentrated sunlight, even if the TEG operates at the Carnot efficiency and the PV performance is assumed independent of temperature, the maximum increase in efficiency is 4.5 percentage points (pp.) for the combined case and 1.8 pp. for the tandem case compared to a stand alone PV. For a more realistic case with a temperature dependent PV and a realistic TEG, the gain in performance is much lower. For the combined PV and TEG system it is shown that a minimum zTzT value is needed in order for the system to be more efficient than a stand alone PV system.Comment: 6 pages, 5 figure

    Modeling the microstructural evolution during constrained sintering

    Get PDF
    A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as well as the FEM calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of a sample constrained by a rigid substrate is simulated. The constrained sintering results in a larger number of pores near the substrate, as well as anisotropic sintering shrinkage, with significantly enhanced strain in the central upper part of the sample surface, and minimal strain at the edges near the substrate. All these features have also previously been observed experimentally.Comment: 9 pages, 7 figure

    The magnetic properties of the hollow cylindrical ideal remanence magnet

    Get PDF
    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet.Comment: 5 pages, 3 figure
    corecore