43 research outputs found

    Actions needed before insects can contribute to a real closed-loop circular economy in the EU

    Get PDF
    Insects are the waste managers of nature and could play a vital role in closing the loop of nutrients from society back into the food industry and thereby reduce the environmental impact of our food production system, as is the aim of EU's Farm to Fork strategy. Insects can be used to convert biodegradable waste into their own biomass that can be used as food or in animal feed, thus linking waste management to food production. However, food safety regulations prevent the use of around 70% of available food waste in the EU as rearing substrate for insects. To tap into the true environmental benefits of insects as an alternative protein source, they have to be reared on mixed food waste. The main reason for the food safety regulation is the outbreak of Mad Cow disease (BSE) in the 1980s, caused by prions (misfolded proteins). The circular system that gave rise to Mad Cow disease is the most closed loop system possible. Using insects in waste management to convert bio-waste into animal feed does not entail such a closed loop system, but rather introduces an extra barrier to disease transmission. In order to fully tap into the benefits of insects as an alternative protein source, it is crucial that funds are allocated to determine whether prions are truly a risk in a circular insect food production system

    Resource recovery technologies as microbial risk barriers: towards safe use of excreta in agriculture based on hazard analysis and critical control point

    Get PDF
    Agricultural use of human excreta contributes to sustainable nutrient resource management. In contrast, resource recovery from human excreta is associated with the risk of infection by pathogenic microorganisms. The microbial risk associated with human excreta needs to be properly managed. Pathogen inactivation efficacy of resource recovery technologies should be evaluated so that individual resource recovery processes can be monitored as health risk barriers. To this end, we reviewed the sanitization potential of resource recovery technologies from human excreta and identified the monitoring parameters of hazard analysis and critical control point (HACCP). We describe the inactivation of surrogate microorganisms in selected technologies in terms of the physicochemical conditions of matrices, different tolerances among surrogate microorganisms, and inactivation mechanisms. The estimated storage/operating time required to achieve the target log reduction values (LRVs) is shortened in thermal processes such as thermophilic storage, drying, composting, microwaving, and thermophilic digestion. In most processes, phage and helminth eggs were found to be appropriate indicators for conservative estimation. Finally, we argue that sanitization is congruent with decomposition of readily degradable organic matter and resource recovery. The barrier efficacy of resource recovery technologies should be validated using a pathogen inactivation kinetics model so that the exposure risk to infectious pathogens is sufficiently reduced through a reasonable combination of non-treatment and non-technical health risk barriers

    Process efficiency in relation to enzyme pre-treatment duration in black soldier fly larvae composting

    Get PDF
    Black soldier fly larvae (BSFL) composting is a treatment in which biodegradable food waste is converted into animal-feed protein and organic fertiliser. BSFL composting has greatest potential for mixed food waste, but under European Union regulations only plant-based waste is permitted as feed for larvae. Biomass conversion efficiency (BCE) in BSFL composting is lower for plant-based waste than for mixed food waste. One way of improving BCE for plant-based waste is to add enzymes to make the waste more available to the larvae, but enzyme pre-treatment is not commonly applied prior to BSFL composting. Therefore this study examined the impact of enzyme pre-treatment duration on process efficiency in BSFL composting of lettuce-cabbage waste pretreated with enzymes for 0-4 days. The results showed that total solids (TS) in larvae decreased with longer enzyme pre-treatment. Direct addition of enzymes at the start of BSFL treatment (0 day pre-treatment) resulted in 22% higher BCE on a volatile solids (VS) basis compared with the control, while longer pre-treatment did not improve BCE further. Much of the VS was respired in the 0-day pre-treatment, resulting in lower mass of residues at the end of treatment. Longer pre-treatment increased microbial respiration, suggesting that the microbial community consumed more easily available carbohydrates during the pre-treatment step, which counteracted the purpose of enzyme pre-treatment, i.e. increasing BCE during BSFL composting

    Alkaline dehydration of source -separated fresh human urine: Preliminary insights into using different dehydration temperature and media

    Get PDF
    For sanitation systems aiming at recycling nutrients, separately collecting urine at source is desirable as urine contains most of the nutrients in wastewater. However, reducing the volume of the collected urine and recovering majority of its nutrients is necessary, as this improves the transportability and the end-application of urine-based fertilisers. In this study, we present an innovative method, alkaline dehydration, for treating fresh human urine into a nutrient-rich dry solid. Our aim was to investigate whether fresh urine (pH11) could be dehydrated at elevated temperatures (50 and 60 °C) with minimal loss of urea, urine's principal nitrogen compound. We found that it was possible to concentrate urine 48 times, yielding dry end-products with high fertiliser value: approximately, 10% N, 1% P, and 4% K. We monitored the physico-chemical properties and the composition of various dehydration media to provide useful insights into their suitability for dehydrating urine. We demonstrated that it is possible to recover >90% nitrogen when treating fresh urine by alkaline dehydration by inhibiting the enzymatic hydrolysis of urea at elevated pH and minimisingthe chemical hydrolysis of urea with high urine dehydration rates

    Factors influencing physicochemical characteristics of faecal sludge in Phnom Penh, Cambodia

    Get PDF
    Comprehensive knowledge of faecal sludge characteristics is needed for sludge management planning, but it is lacking for the city of Phnom Penh, Cambodia. Thus, this study characterised physicochemical properties of faecal sludge from households in Phnom Penh and related these to sludge containment unit type, unit age, connectedness to the urban drainage network, type of wastewater captured, watertight containment units, number of users, and emptying practices. In total, 194 faecal sludge samples collected during containment unit emptying were analysed for physicochemical parameters. Information on containment units was collected in a survey of emptiers and users. Mean values of faecal sludge chemical parameters were found to be slightly lower than previously reported values for low-/middle-income countries, whereas physicochemical properties were within similar ranges. The main factor influencing organic matter content in faecal sludge was containment unit connection to the urban drainage network, whereas emptying practice and capture of only blackwater affected nutrient levels. The concentrations of nutrients and organic pollutants greatly exceeded Cambodian discharge standards for wastewater. This causes environmental impacts, so treatment is needed before discharge. The faecal sludge characteristics and influencing factors identified here can serve as a baseline for sanitation stakeholders planning faecal sludge management systems in Phnom Penh and similar cities

    Alkaline Dehydration of Human Urine Collected in Source-Separated Sanitation Systems Using Magnesium Oxide

    Get PDF
    Fresh human urine, after it is alkalized to prevent the enzymatic hydrolysis of urea, can be dehydrated to reduce its volume and to produce a solid fertilizer. In this study, we investigated the suitability of MgO to alkalize and dehydrate urine. We selected MgO due to its low solubility (90% and N recovery of 80%, and yielded products with high concentrations of macronutrients (7.8% N, 0.7% P and 3.9% K). By modeling the chemical speciation in urine, we also showed that ammonia stripping rather than urea hydrolysis limited the N recovery, since the urine used in our study was partially hydrolyzed. To maximize the recovery of N during alkaline urine dehydration using MgO, we recommend treating fresh/un-hydrolysed urine a temperature <40 degrees C, tailoring the drying substrate to capture NH4+ as struvite, and using co-substrates to limit the molecular diffusion of ammonia. Treating fresh urine by alkaline dehydration requires only 3.6 kg MgO cap(-1)y(-1) and a cost of US$ 1.1 cap(-1)y(-1). Therefore, the use of sparingly soluble alkaline compounds like MgO in urine-diverting sanitation systems holds much promise

    Nutrient stocks, flows and balances for the Bolivian agri-food system: Can recycling human excreta close the nutrient circularity gap?

    Get PDF
    Analysis of the current state of nutrient stocks, flows, and balances of a territory is necessary to inform strategies that can transition the agri-food sector to a circular economy model. In this study, we quantified the nitrogen and phosphorus budgets for the Bolivian agri-food system at national and regional scales by way of agroecological zoning. We performed nutrient balances to calculate indicators for sufficiency (extent of nutrient deficit/surplus) and circularity (proportion of nutrients recirculated). We also evaluated the potential of renewable stocks (human excreta and livestock manure) to meet nutrient deficits in the system. Our results showed that there are apparent deficits of 32 kt N and 8 kt P in the system that cannot be accounted for using available data. We estimate the real deficits required to bring yields of 45 crops grown in Bolivia to parity with those of neighbouring countries to be 110 kt N and 33 kt P. About 44% of nitrogen and 74% of phosphorus is currently recirculated in the system, with the major nutrient inputs being biological nitrogen fixation, livestock manure, and crop residues. However, nutrient recycling is likely to decrease in the future because the national strategy to address nutrient deficits is to increase domestic production of synthetic fertilisers. Our analysis also shows that there is a sufficient stock of nutrients already available in human excreta (39 kt N and 5 kt P) to cover 100% of the nitrogen deficit and 64% of the phosphorus deficit. The low-altitude zone of Chiquitania-Pantanal alone accounts for 65% of cultivation and 80% of the nutrient demand in the country. Here, export-oriented crops like soybean and sorghum are grown, but less than 25% of the nitrogen is recirculated. In contrast, there are nutrient surpluses of 41 kt N and 34 kt P in agroecological zones like the Valleys and Altiplano where traditional agriculture is practiced, and the majority of food is grown for local consumption. Overall, we find that recycling of human excreta, combined with transfer of regional nutrient surpluses, could be an effective strategy to reduce the overall nutrient deficit in the system
    corecore