3 research outputs found

    Reconstructing phase dynamics of oscillator networks

    Full text link
    We generalize our recent approach to reconstruction of phase dynamics of coupled oscillators from data [B. Kralemann et al., Phys. Rev. E, 77, 066205 (2008)] to cover the case of small networks of coupled periodic units. Starting from the multivariate time series, we first reconstruct genuine phases and then obtain the coupling functions in terms of these phases. The partial norms of these coupling functions quantify directed coupling between oscillators. We illustrate the method by different network motifs for three coupled oscillators and for random networks of five and nine units. We also discuss nonlinear effects in coupling.Comment: 6 pages, 5 figures, 27 reference

    Optimal Phase Description of Chaotic Oscillators

    Full text link
    We introduce an optimal phase description of chaotic oscillations by generalizing the concept of isochrones. On chaotic attractors possessing a general phase description, we define the optimal isophases as Poincar\'e surfaces showing return times as constant as possible. The dynamics of the resultant optimal phase is maximally decoupled of the amplitude dynamics, and provides a proper description of phase resetting of chaotic oscillations. The method is illustrated with the R\"ossler and Lorenz systems.Comment: 10 Pages, 14 Figure
    corecore