1 research outputs found
First principle study of intrinsic defects in hexagonal tungsten carbide
The characteristics of intrinsic defects are important for the understanding
of self-diffusion processes, mechanical strength, brittleness, and plasticity
of tungsten carbide, which present in the divertor of fusion reactors. Here, we
use first-principles calculations to investigate the stability of point defects
and their complexes in WC. Our calculation results confirm that the formation
energies of carbon defects are much lower than that of tungsten defects. The
outward relaxations around vacancy are found. Both interstitial carbon and
interstitial tungsten atom prefer to occupy the carbon basal plane projection
of octahedral interstitial site. The results of isolated carbon defect
diffusion show that the carbon vacancy stay for a wide range of temperature
because of extremely high diffusion barriers, while carbon interstitial
migration is activated at lower temperatures for its considerable lower
activation energy. These results provide evidence for the presumption that the
800K stage is attributed by the annealing out of carbon vacancies by long-range
migration.Comment: Submitted to Journal of Nuclear Material