3 research outputs found

    Nonlocal correlations in iron pnictides and chalcogenides

    Get PDF
    Deviations of low-energy electronic structurse of iron-based superconductors from density-functional-theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically been described in terms of a local self-energy within the framework of dynamical mean field theory, while the latter appears to require nonlocal effects due to interband scattering. By calculating the renormalized band structure in both random phase approximation (RPA) and the two-particle self-consistent approximation (TPSC), we show that correlations in pnictide systems like LaFeAsO and LiFeAs can be described rather well by a nonlocal self-energy. In particular, Fermi pocket shrinkage as seen in experiments occurs due to repulsive interband finite-energy scattering. For the canonical iron chalcogenide system FeSe in its bulk tetragonal phase, the situation is, however, more complex since even including momentum-dependent band renormalizations cannot explain experimental findings. We propose that the nearest-neighbor Coulomb interaction may play an important role in band-structure renormalization in FeSe. We further compare our evaluations of nonlocal quasiparticle scattering lifetime within RPA and TPSC with experimental data for LiFeAs

    Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue

    No full text
    Weight loss has been shown to significantly improve Adipose tissue (AT) function, however changes in AT gene expression profiles particularly in visceral AT (VAT) have not been systematically studied. Here, we tested the hypothesis that extensive weight loss in response to bariatric surgery (BS) causes AT gene expression changes, which may affect energy and lipid metabolism, inflammation and secretory function of AT. We assessed gene expression changes by whole genome expression chips in AT samples obtained from six morbidly obese individuals, who underwent a two step BS strategy with sleeve gastrectomy as initial and a Roux-en-Y gastric bypass as second step surgery after 12 +/- 2 months. Global gene expression differences in VAT and subcutaneous (S) AT were analyzed through the use of genome-scale metabolic model (GEM) for adipocytes. Significantly altered gene expressions were PCR-validated in 16 individuals, which also underwent a two-step surgery intervention. We found increased expression of cell death-inducing DFFA-like effector a (CIDEA), involved in formation of lipid droplets in both fat depots in response to significant weight loss. We observed that expression of the genes associated with metabolic reactions involved in NAD+, glutathione and branched chain amino acid metabolism are significantly increased in AT depots after surgery-induced weight loss

    Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance

    No full text
    To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the global gene expression changes in the liver and three adipose tissues from obese subjects undergoing bariatric surgery and integrated these data into the cell-specific INs. We found dysregulations in mannose metabolism in obese subjects and validated our predictions by detecting mannose levels in the plasma of the lean and obese subjects. We observed significant correlations between plasma mannose levels, BMI, and insulin resistance (IR). We also measured plasma mannose levels of the subjects in two additional different cohorts and observed that an increased plasma mannose level was associated with IR and insulin secretion. We finally identified mannose as one of the best plasma metabolites in explaining the variance in obesity-independent IR
    corecore