2 research outputs found

    Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications

    Get PDF
    Antenna array technology enables the directional transmission and reception of wireless signals for communication, localization, and sensing purposes. The signal processing algorithms that underpin it began to be developed several decades ago [1], but it was with the deployment of 5G wireless mobile networks that the technology became mainstream [2]. The number of antenna elements in the arrays of 5G base stations (BSs) and user devices can be measured on the order of hundreds and tens, respectively. As networks shift toward using higher-frequency bands, more antennas fit into a given aperture. For communication purposes, the arrays are harnessed to form beams in desired directions to improve the signal-to-noise ratio (SNR) and multiplex data signals in the spatial domain (to one or multiple devices) and to suppress interference by spatial filtering [2]. For localization purposes, these arrays are employed to maintain the SNR when operating across wider bandwidths, for angle-of-arrival estimation, and to separate multiple sources and scatterers [3]. The practical use of these features requires that each antenna array is equipped with well-designed signal processing algorithms

    CELTIC CP5-026 WINNER+, D1.4 Initial Report on Advanced Multiple Antenna Systems

    No full text
    This deliverable captures the first set of best innovative concepts identified in the field of Advanced Multiple Antenna Systems for potential inclusion into the WINNER+ system concept. The concepts consist of promising principles or ideas as well as detailed innovative techniques. For each concept, the associated benefits as well as the corresponding requirements on the system architecture and protocols, measurements and signalling, are considered. The document involves two main tracks: development of new advanced antenna schemes in the context of conventional cellular networks, and a study of coordinated multipoint transmission and reception, where multiple network nodes cooperate to enhance system performance
    corecore