716 research outputs found

    Derivation of nearest-neighbor DNA parameters in magnesium from single-molecule experiments

    Get PDF
    DNA hybridization is an essential molecular reaction in biology with many applications. The nearest-neighbor (NN) model for nucleic acids predicts DNA thermodynamics using energy values for the different base pair motifs. These values have been derived from melting experiments in monovalent and divalent salt and applied to predict melting temperatures of oligos within a few degrees. However, an improved determination of the NN energy values and their salt dependencies in magnesium is still needed for current biotechnological applications seeking high selectivity in the hybridization of synthetic DNAs. We developed a methodology based on single molecule unzipping experiments to derive accurate NN energy values and initiation factors for DNA. A new set of values in magnesium is derived, which reproduces unzipping data and improves melting temperature predictions for all available oligo lengths, in a range of temperature and salt conditions where correlation effects between the magnesium bound ions are weak. The NN salt correction parameters are shown to correlate to the GC content of the NN motifs. Our study shows the power of single-molecule force spectroscopy assays to unravel novel features of nucleic acids such as sequence-dependent salt corrections

    Dynamic force spectroscopy of DNA hairpins. I. Force kinetics and free energy landscapes

    Full text link
    We investigate the thermodynamics and kinetics of DNA hairpins that fold/unfold under the action of applied mechanical force. We introduce the concept of the molecular free energy landscape and derive simplified expressions for the force dependent Kramers-Bell rates. To test the theory we have designed a specific DNA hairpin sequence that shows two-state cooperative folding under mechanical tension and carried out pulling experiments using optical tweezers. We show how we can determine the parameters that characterize the molecular free energy landscape of such sequence from rupture force kinetic studies. Finally we combine such kinetic studies with experimental investigations of the Crooks fluctuation relation to derive the free energy of formation of the hairpin at zero force.Comment: 28 pages, 12 figure

    The Wigner function associated to the Rogers-Szego polynomials

    Full text link
    We show here that besides the well known Hermite polynomials, the q-deformed harmonic oscillator algebra admits another function space associated to a particular family of q-polynomials, namely the Rogers-Szego polynomials. Their main properties are presented, the associated Wigner function is calculated and its properties are discussed. It is shown that the angle probability density obtained from the Wigner function is a well-behaved function defined in the interval [-Pi,Pi), while the action probability only assumes integer values greater or equal than zero. It is emphasized the fact that the width of the angle probability density is governed by the free parameter q characterizing the polynomial.Comment: 12 pages, 2 (mathemathica) figure

    Single-molecule derivation of salt dependent base-pair free energies in DNA

    Full text link
    Accurate knowledge of the thermodynamic properties of nucleic acids is crucial to predicting their structure and stability. To date most measurements of base-pair free energies in DNA are obtained in thermal denaturation experiments, which depend on several assumptions. Here we report measurements of the DNA base-pair free energies based on a simplified system, the mechanical unzipping of single DNA molecules. By combining experimental data with a physical model and an optimization algorithm for analysis, we measure the 10 unique nearest-neighbor base-pair free energies with 0.1 kcal mol-1 precision over two orders of magnitude of monovalent salt concentration. We find an improved set of standard energy values compared with Unified Oligonucleotide energies and a unique set of 10 base-pair-specific salt-correction values. The latter are found to be strongest for AA/TT and weakest for CC/GG. Our new energy values and salt corrections improve predictions of DNA unzipping forces and are fully compatible with melting temperatures for oligos. The method should make it possible to obtain free energies, enthalpies and entropies in conditions not accessible by bulk methodologies.Comment: Main text: 27 pages, 4 figures, 2 tables. Supporting Information: 51 pages, 19 figures, 4 table

    Quantum Tunneling in the Wigner Representation

    Get PDF
    Time dependence for barrier penetration is considered in the phase space. An asymptotic phase-space propagator for nonrelativistic scattering on a one - dimensional barrier is constructed. The propagator has a form universal for various initial state preparations and local potential barriers. It is manifestly causal and includes time-lag effects and quantum spreading. Specific features of quantum dynamics which disappear in the standard semi-classical approximation are revealed. The propagator may be applied to calculation of the final momentum and coordinate distributions, for particles transmitted through or reflected from the potential barrier, as well as for elucidating the tunneling time problem.Comment: 18 pages, LATEX, no figure

    Vanadium Inhalation in a Mouse Model for the Understanding of Air-Suspended Particle Systemic Repercussion

    Get PDF
    There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature

    Effects of DSP4 and methylphenidate on spatial memory performance in rats

    Get PDF
    In this experiment, we have investigated the spatial memory performance of rats following a central noradrenaline depletion induced by three different doses of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) and following administration of three different doses of methylphenidate (MPH). The rats were required to find food pellets hidden on a holeboard. The sole administration of DSP4 induced only minor cognitive deficits. However, the treatment with MPH increased the reference memory error, the impulsivity and the motor activity of the DSP4-treated rats. Since the noradrenergic terminals in a DSP4-treated rat are significantly reduced, the administration of MPH has little effect on the noradrenergic system and increases dopaminergic rather than noradrenergic activity, resulting in an imbalance with relatively high dopaminergic and low noradrenergic activities. It is suggested that a reduction of noradrenaline and an increase of dopamine induce ADHD-related deficits and that the depletion of noradrenaline is not sufficient for an appropriate rat model of ADHD

    Non-specific binding of Na+^+ and Mg2+^{2+} to RNA determined by force spectroscopy methods

    Full text link
    RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na+^+]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg2+^{2+} salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100 fold that concentration for small molecular constructs.Comment: main paper (32 pages, 11 figures, 1 table) + supplementary information (15 pages

    A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189

    Get PDF
    With a genome size of ∼580 kb and approximately 480 protein coding regions, Mycoplasma genitalium is one of the smallest known self-replicating organisms and, additionally, has extremely fastidious nutrient requirements. The reduced genomic content of M. genitalium has led researchers to suggest that the molecular assembly contained in this organism may be a close approximation to the minimal set of genes required for bacterial growth. Here, we introduce a systematic approach for the construction and curation of a genome-scale in silico metabolic model for M. genitalium. Key challenges included estimation of biomass composition, handling of enzymes with broad specificities, and the lack of a defined medium. Computational tools were subsequently employed to identify and resolve connectivity gaps in the model as well as growth prediction inconsistencies with gene essentiality experimental data. The curated model, M. genitalium iPS189 (262 reactions, 274 metabolites), is 87% accurate in recapitulating in vivo gene essentiality results for M. genitalium. Approaches and tools described herein provide a roadmap for the automated construction of in silico metabolic models of other organisms

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    Get PDF
    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n  =  2 RMP maintaining good confinement HH(98,y2)≈0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.Peer reviewe
    corecore