2 research outputs found

    Freely Available, Fully Automated AI-Based Analysis of Primary Tumour and Metastases of Prostate Cancer in Whole-Body [F-18]-PSMA-1007 PET-CT

    Get PDF
    Here, we aimed to develop and validate a fully automated artificial intelligence (AI)-based method for the detection and quantification of suspected prostate tumour/local recurrence, lymph node metastases, and bone metastases from [F-18]PSMA-1007 positron emission tomography-computed tomography (PET-CT) images. Images from 660 patients were included. Segmentations by one expert reader were ground truth. A convolutional neural network (CNN) was developed and trained on a training set, and the performance was tested on a separate test set of 120 patients. The AI method was compared with manual segmentations performed by several nuclear medicine physicians. Assessment of tumour burden (total lesion volume (TLV) and total lesion uptake (TLU)) was performed. The sensitivity of the AI method was, on average, 79% for detecting prostate tumour/recurrence, 79% for lymph node metastases, and 62% for bone metastases. On average, nuclear medicine physicians\u27 corresponding sensitivities were 78%, 78%, and 59%, respectively. The correlations of TLV and TLU between AI and nuclear medicine physicians were all statistically significant and ranged from R = 0.53 to R = 0.83. In conclusion, the development of an AI-based method for prostate cancer detection with sensitivity on par with nuclear medicine physicians was possible. The developed AI tool is freely available for researchers

    A prospective phase II study of prostate-specific antigen-guided salvage radiotherapy and 68Ga-PSMA-PET for biochemical relapse after radical prostatectomy - The PROPER 1 trial

    No full text
    Background and purpose: The treatment of biochemical recurrence (BCR) after prostatectomy is challenging as the site of the recurrence is often undetectable. Our aim was to test a personalised treatment concept for BCR based on PSA kinetics during salvage radiotherapy (SRT) combined with prostate-specific membrane antigen positron emission tomography (PSMA-PET).Materials and methods: This phase II trial included 100 patients with BCR. PSMA-PET was performed at baseline. PSA was measured weekly during SRT. Initially, 70 Gy in 35 fractions was prescribed to the prostate bed. Radiotherapy was adapted after 50 Gy. Non-responders (PSA still ≥ 0.15 ng/mL) received sequential lymph node irradiation with a boost to PSMA-PET positive lesions, while responders (PSA < 0.15 ng/mL) continued SRT as planned. PET-findings were only taken into consideration for treatment planning in case of PSA non-response after 50 Gy.Results: Data from 97 patients were eligible for analysis. Thirty-four patients were classified as responders and 63 as non-responders. PSMA-PET was positive in 3 patients (9%) in the responder group and in 22 (35%) in the non-responder group (p = 0.007). The three-year failure-free survival was 94% for responders and 68% for non-responders (median follow-up 38 months). There were no significant differences in physician-reported urinary and bowel toxicity. Patient-reported diarrhoea at end of SRT was more common among non-responders.Conclusion: This new personalised treatment concept with intensified SRT based on PSA response demonstrated a high tumour control rate in both responders and non-responders. These results suggest a clinically significant effect with moderate side effects in a patient group with otherwise poor prognosis. PSMA-PET added limited value. The treatment approach is now being evaluated in a phase III trial.Clinical trial registration numbers: NCT02699424&ISRCTN45905321
    corecore