1,615 research outputs found
Scattering Experiments with Microwave Billiards at an Exceptional Point under Broken Time Reversal Invariance
Scattering experiments with microwave cavities were performed and the effects
of broken time-reversal invariance (TRI), induced by means of a magnetized
ferrite placed inside the cavity, on an isolated doublet of nearly degenerate
resonances were investigated. All elements of the effective Hamiltonian of this
two-level system were extracted. As a function of two experimental parameters,
the doublet and also the associated eigenvectors could be tuned to coalesce at
a so-called exceptional point (EP). The behavior of the eigenvalues and
eigenvectors when encircling the EP in parameter space was studied, including
the geometric amplitude that builds up in the case of broken TRI. A
one-dimensional subspace of parameters was found where the differences of the
eigenvalues are either real or purely imaginary. There, the Hamiltonians were
found PT-invariant under the combined operation of parity (P) and time reversal
(T) in a generalized sense. The EP is the point of transition between both
regions. There a spontaneous breaking of PT occurs
Development of Muon Drift-Tube Detectors for High-Luminosity Upgrades of the Large Hadron Collider
The muon detectors of the experiments at the Large Hadron Collider (LHC) have
to cope with unprecedentedly high neutron and gamma ray background rates. In
the forward regions of the muon spectrometer of the ATLAS detector, for
instance, counting rates of 1.7 kHz/square cm are reached at the LHC design
luminosity. For high-luminosity upgrades of the LHC, up to 10 times higher
background rates are expected which require replacement of the muon chambers in
the critical detector regions. Tests at the CERN Gamma Irradiation Facility
showed that drift-tube detectors with 15 mm diameter aluminum tubes operated
with Ar:CO2 (93:7) gas at 3 bar and a maximum drift time of about 200 ns
provide efficient and high-resolution muon tracking up to the highest expected
rates. For 15 mm tube diameter, space charge effects deteriorating the spatial
resolution at high rates are strongly suppressed. The sense wires have to be
positioned in the chamber with an accuracy of better than 50 ?micons in order
to achieve the desired spatial resolution of a chamber of 50 ?microns up to the
highest rates. We report about the design, construction and test of prototype
detectors which fulfill these requirements
Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells
Neuronal communication and endocrine signaling are fundamental for integrating
the function of tissues and cells in the body. Hormones released by endocrine
cells are transported to the target cells through the circulation. By contrast, transmitter
release from neurons occurs at specialized intercellular junctions, the synapses.
Nevertheless, the mechanisms by which signal molecules are synthesized,
stored, and eventually secreted by neurons and endocrine cells are very similar.
Neurons and endocrine cells have in common two different types of secretory
organelles, indicating the presence of two distinct secretory pathways. The synaptic
vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the
secretory granules (also referred to as dense core vesicles, because of their electron
dense content) are filled with neuropeptides and amines. In endocrine cells, peptide
hormones and amines predominate in secretory granules. The function and content
of vesicles, which share antigens with synaptic vesicles, are unknown for most
endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain
GABA, which may be involved in intrainsular signaling.'
Exocytosis of both synaptic vesicles and secretory granules is controlled by
cytoplasmic calcium. However, the precise mechanisms of the subsequent steps,
such as docking of vesicles and fusion of their membranes with the plasma membrane,
are still incompletely understood. This contribution summarizes recent observations
that elucidate components in neurons and endocrine cells involved in
exocytosis. Emphasis is put on the intracellular aspects of the release of secretory
granules that recently have been analyzed in detail
Experimental Test of a Two-dimensional Approximation for Dielectric Microcavities
Open dielectric resonators of different shapes are widely used for the
manufacture of microlasers. A precise determination of their resonance
frequencies and widths is crucial for their design. Most microlasers have a
flat cylindrical geometry, and a two-dimensional approximation, the so-called
method of the effective index of refraction, is commonly employed for numerical
calculations. Our aim has been an experimental test of the precision and
applicability of a model based on this approximation. We performed very
thorough and accurate measurements of the resonance frequencies and widths of
two passive circular dielectric microwave resonators and found significant
deviations from the model predictions. From this we conclude that the model
generally fails in the quantitative description of three-dimensional dielectric
resonators.Comment: 10 pages, 13 figure
Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells
The molecular events underlying the inhibition of exocytosis by tetanus toxin were investigated in permeabilized adrenal chromaffin cells. We found that replacement of amino acid residues within the putative zinc binding domain of the tetanus toxin light chain such as of histidine (position 233) by cysteine or valine, or of glutamate (position 234) by glutamine completely abolished the effect of the light chains on Ca2+ induced catecholamine release. Dipicolinic acid, a strong chelating agent for zinc, also prevented the effect of the tetanus toxin light chain. Zn2+ and, less potently Cu2+ and Ni2+, but not Cd2+ and Co2+, restored the activity of the neurotoxin. These data show that zinc and the putative zinc binding domain constitute the active site of the tetanus toxin light chain. Neither captopril, an inhibitor of synaptobrevin cleavage nor peptides spanning the site of synaptobrevins cleaved by the tetanus toxin in neurons, prevented the inhibition of Ca2+ induced catecholamine release by the tetanus toxin light chain. This suggests that synaptobrevins are not a major target of tetanus toxin in adrenal chromaffin cells
PT symmetry and spontaneous symmetry breaking in a microwave billiard
We demonstrate the presence of parity-time (PT) symmetry for the
non-Hermitian two-state Hamiltonian of a dissipative microwave billiard in the
vicinity of an exceptional point (EP). The shape of the billiard depends on two
parameters. The Hamiltonian is determined from the measured resonance spectrum
on a fine grid in the parameter plane. After applying a purely imaginary
diagonal shift to the Hamiltonian, its eigenvalues are either real or complex
conjugate on a curve, which passes through the EP. An appropriate basis choice
reveals its PT symmetry. Spontaneous symmetry breaking occurs at the EP
Evaluation of Corn Distillers Solubles on Finishing Steer Performance
A finishing study was conducted to evaluate the effects of feeding 0, 8, 16, or 20% corn distillers solubles (CDS), as well as the effects of feeding a combination of 16% CDS and 20% wet distillers grains plus solubles (WDGS) to replace a blend of dry-rolled and high-moisture corn on finishing steer performance. As inclusions of CDS increased, ADG linearly increased and F:G linearly decreased. Feeding value of CDS at 20% inclusion was determined to be 147% compared to the corn blend. The addition of WDGS resulted in a decrease in DMI with similar ADG, resulting in a decrease in F:G. Feeding a combination of CDS and WDGS resulted in a feeding value of 161% compared to corn. Feeding CDS up to 20% or in combination with WDGS displaces corn in finishing diets and improves ADG and F:G
Recommended from our members
Tritium permeation through Incoloy 800 oxidized in situ by water vapor
The in situ formation of oxide layers on the surfaces of heat exchangers in the steam system of a fusion power plant may be the most feasible way to control tritium release into the steam. Tritium permeabilities of Incoloy 800 have been determined while the downstream surface was oxidized by water vapor at 525, 660 and 720/sup 0/C. The in situ formation of oxide coatings on the Incoloy 800 surface has been observed to reduce tritium permeabilities by factors of 30 to 700 depending on conditions. The effects of the in situ formed oxide coatings to impede tritium permeation are dependent on the chemical and physical compositions of the oxides, and the compositions of the oxides have been observed to depend on the history of the material
Introduction of Macromolecules into Bovine Adrenal Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Tetanus Toxin on Catecholamine Secretion
Conditions are described for controlled plasma membrane permeabilization of rat pheochromocytoma cells (PC12) and cultured bovine adrenal chromaffin cells by Streptolysin O (SLO). The transmembrane pores created by SLO invoke rapid efflux of intracellular 86Rb+ and ATP, and also permit passive diffusion of proteins, including immunoglobulins, into the cells. SLO-permeabilized PC12 cells release [3H]dopamine in response to micromolar concentrations of free Ca2+. Permeabilized adrenal chromaffin cells present a similar exocytotic response to Ca2+ in the presence of Mg2+/ ATP. Permeabilized PC12 cells accumulate antibodies against synaptophysin and calmodulin, but neither antibody reduces the Ca2+-dependent secretory response. Reduced tetanus toxin, although ineffective when applied to intact chromaffin cells, inhibits Ca2+-induced exocytosis by both types of permeabilized cells studied. Omission of dithiothreitol, toxin inactivation by boiling, or preincubation with neutralizing antibodies abolishes the inhibitory effect. The data indicate that plasma membrane permeabilization by Streptolysin O is a useful tool to probe and define cellular components that are involved in the final steps of exocytosis
Verdier specialization via weak factorization
Let X in V be a closed embedding, with V - X nonsingular. We define a
constructible function on X, agreeing with Verdier's specialization of the
constant function 1 when X is the zero-locus of a function on V. Our definition
is given in terms of an embedded resolution of X; the independence on the
choice of resolution is obtained as a consequence of the weak factorization
theorem of Abramovich et al. The main property of the specialization function
is a compatibility with the specialization of the Chern class of the complement
V-X. With the definition adopted here, this is an easy consequence of standard
intersection theory. It recovers Verdier's result when X is the zero-locus of a
function on V. Our definition has a straightforward counterpart in a motivic
group. The specialization function and the corresponding Chern class and
motivic aspect all have natural `monodromy' decompositions, for for any X in V
as above. The definition also yields an expression for Kai Behrend's
constructible function when applied to (the singularity subscheme of) the
zero-locus of a function on V.Comment: Minor revision. To appear in Arkiv f\"or Matemati
- …