5 research outputs found

    Draining the Water Hole: Mitigating Social Engineering Attacks with CyberTWEAK

    Full text link
    Cyber adversaries have increasingly leveraged social engineering attacks to breach large organizations and threaten the well-being of today's online users. One clever technique, the "watering hole" attack, compromises a legitimate website to execute drive-by download attacks by redirecting users to another malicious domain. We introduce a game-theoretic model that captures the salient aspects for an organization protecting itself from a watering hole attack by altering the environment information in web traffic so as to deceive the attackers. Our main contributions are (1) a novel Social Engineering Deception (SED) game model that features a continuous action set for the attacker, (2) an in-depth analysis of the SED model to identify computationally feasible real-world cases, and (3) the CyberTWEAK algorithm which solves for the optimal protection policy. To illustrate the potential use of our framework, we built a browser extension based on our algorithms which is now publicly available online. The CyberTWEAK extension will be vital to the continued development and deployment of countermeasures for social engineering.Comment: IAAI-20, AICS-2020 Worksho

    The influence of diet and environment on the gut microbial community of field crickets

    Get PDF
    The extent to which diet and environment influence gut community membership (presence or absence of taxa) and structure (individual taxon abundance) is the subject of growing interest in microbiome research. Here, we examined the gut bacterial communities of three cricket groups: (1) wild caught field crickets, (2) laboratory-reared crickets fed cat chow, and (3) laboratory-reared crickets fed chemically defined diets. We found that both environment and diet greatly altered the structure of the gut bacterial community. Wild crickets had greater gut microbial diversity and higher Firmicutes to Bacteroidetes ratios, in contrast to laboratory-reared crickets. Predictive metagenomes revealed that laboratory-reared crickets were significantly enriched in amino acid degradation pathways, while wild crickets had a higher relative abundance of peptidases that would aid in amino acid release. Although wild and laboratory animals differ greatly in their bacterial communities, we show that the community proportional membership remains stable from Phylum to Family taxonomic levels regardless of differences in environment and diet, suggesting that endogenous factors, such as host genetics, have greater control in shaping gut community membership

    Standardized multi-omics of Earth’s microbiomes reveals microbial and metabolite diversity

    No full text
    Extended data is available for this paper at https://doi.org/10.1038/s41564-022-01266-x.Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth’s environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.The Samuel Freeman Charitable Trust, US National Institute of Health (NIH), US Department of Agriculture – National Institute of Food and Agriculture, the US National Science Foundation (NSF) - Center for Aerosol Impacts on Chemistry of the Environment, Crohn’s & Colitis Foundation Award (CCFA), US Department of Energy - Office of Science - Office of Biological and Environmental Research - Environmental System Science Program, Semiconductor Research Corporation and Defence Advanced Research Projects Agency (SRC/DARPA), Department of Defense, the Office of Naval Research (ONR, the Emerald Foundation, IBM Research AI through the AI Horizons Network, and the Center for Microbiome Innovation, the NIH, the Danish Council for Independent Research (DFF) , the Research Foundation – Flanders, Deutsche Forschungsgemeinschaft, the Gordon and Betty Moore Foundation. Metabolomics analyses at Pacific Northwest National Laboratory (PNNL) were supported by the Laboratory Directed Research and Development program via the Microbiomes in Transition Initiative and performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Office of Biological and Environmental Research and located at PNNL.http://www.nature.com/nmicrobiolam2023GeneticsNon
    corecore