97 research outputs found
An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results
The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times
Effect of deoxygenation and prestressing on hydrocarbon fuel thermal stability
A jet fuel thermal oxidation tester was used to study the effect of deoxygenation and deoxygenated prestressing on deposit formation when hydrocarbon fuels are thermally stressed. Four pure hydrocarbons (n-decane, cyclohexane, benzene and 1-hexene) and two mixtures (10 percent tetralin in n-dodecane and commercial Jet A) were used at temperatures of 250 C to 400 C. Deoxygenation decreased deposit formation for cycloheaxane but increased it for benzene. Deoxygenation decreased deposit formation for the two fuel mixtures at 250 C but had no effect at 350 C. Deoxygenated prestressing either increased or decreased deposit formation depending on the fuel used and the temperature
Carbon monoxide oxidation rates computed for automobile thermal reactor conditions
Carbon monoxide oxidation rates in thermal reactors for exhaust manifolds are computed by integrating differential equations for system of twenty-nine reversible chemical reactions. Reactors are noncatalytic replacements for conventional exhaust manifolds and are a system for reducing carbon monoxide and hydrocarbons in automobile exhausts
Chemical kinetics computer program for static and flow reactions
General chemical kinetics computer program for complex gas mixtures has been developed. Program can be used for any homogeneous reaction in either one dimensional flow or static system. It is flexible, accurate, and easy to use. It can be used for any chemical system for which species thermodynamic data and reaction rate constant data are known
Effect of fuel nitrogen and hydrogen content on emissions in hydrocarbon combustion
How the emissions of nitrogen oxides and carbon monoxide are affected by: (1) the decreased hydrogen content and (2) the increased organic nitrogen content of coal derived fuels is investigated. Previous CRT experimental work in a two stage flame tube has shown the effectiveness of rich lean two stage combustion in reducing fuel nitrogen conversion to nitrogen oxides. Previous theoretical work gave preliminary indications that emissions trends from the flame tube experiment could be predicted by a two stage, well stirred reactor combustor model using a detailed chemical mechanism for propane oxidation and nitrogen oxide formation. Additional computations are reported and comparisons with experimental results for two additional fuels and a wide range of operating conditions are given. Fuels used in the modeling are pure propane, a propane toluene mixture and pure toluene. These give hydrogen contents 18, 11 and 9 percent by weight, respectively. Fuel bound nitrogen contents of 0.5 and 1.0 percent were used. Results are presented for oxides of nitrogen and also carbon monoxide concentrations as a function of primary equivalence ratio, hydrogen content and fuel bound nitrogen content
Effect of trichlorofluoromethane and molecular chlorine on ozone formation by simulated solar radiation
Mixtures of air with either Cl2 or CFCl3 were photolyzed in a reaction chamber by simulated solar radiation. Ozone formation was temporarily inhibited by Cl2 and permanently inhibited by CFCl3. A chemical mechanism including gas phase and wall reactions is proposed to explain these results. The CFCl3 is assumed to be adsorbed on the chamber walls and to poison the sites for Cl destruction
Effect of pollutant gases on ozone production by simulated solar radiation
Experiments using simulated solar radiation in a chamber, with a controlled atmospheric pressure near 1 atmosphere, were conducted to evaluate O3 production. The effects of CO and H2O were analyzed to determine if the CO and H2O addition could reduce NO destruction of O3. The results show that NO is destroyed while destroying O3
Liquid phase products and solid deposit formation from thermally stressed model jet fuels
The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given
Effect of hydrocarbon fuel type on fuel
A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels
General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics
A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included
- …