63 research outputs found
Processing of cell-surface signalling anti-sigma factors prior to signal recognition is aconserved autoproteolytic mechanism that produces two functional domains.
Cell-surface signalling (CSS) enables Gram-negative bacteria to transduce an environmental signal into a cytosolic response. This regulatory cascade involves an outer membrane receptor that transmits the signal to an anti-sigma factor in the cytoplasmic membrane, allowing the activation of an extracytoplasmic function (ECF) sigma factor. Recent studies have demonstrated that RseP-mediated proteolysis of the anti-sigma factors is key to σECF activation. Using the Pseudomonas aeruginosaFoxR anti-sigma factor, we show here that RseP is responsible for the generation of an N-terminal tail that likely contains pro-sigma activity. Furthermore, it has been reported previously that this anti-sigma factor is processed in two separate domains prior to signal recognition. Here, we demonstrate that this process is common in these types of proteins and that the processing event is probably due to autoproteolytic activity. The resulting domains interact and function together to transduce the CSS signal. However, our results also indicate that this processing event is not essential for activity. In fact, we have identified functional CSS anti-sigma factors that are not cleaved prior to signal perception. Together, our results indicate that CSS regulation can occur through both complete and initially processed anti-sigma factors
Self-cleavage of the Pseudomonas aerugginosa cell-surface signaling anti-sigma factor FoxR occurs through an N-O acyl rearrangement.
The Fox system of Pseudomonas aeruginosa is a cell-surface signaling (CSS) pathway employed by the bacterium to sense and respond to the presence of the heterologous siderophore ferrioxamine in the environment. This regulatory pathway controls the transcription of the foxA ferrioxamine receptor gene through the extracytoplasmic function sigma factor σFoxI. In the absence of ferrioxamine, the activity of σFoxI is inhibited by the transmembrane anti-sigma factor FoxR. Upon binding of ferrioxamine by the FoxA receptor, FoxR is processed by a complex proteolytic cascade leading to the release and activation of σFoxI. Interestingly, we have recently shown that FoxR undergoes self-cleavage between the periplasmic Gly-191 and Thr-192 residues independent of the perception of ferrioxamine. This autoproteolytic event, which is widespread among CSS anti-sigma factors, produces two distinct domains that interact and function together to transduce the presence of the signal. In this work, we provide evidence that the selfcleavage of FoxR is not an enzyme-dependent process but is induced by an N-O acyl rearrangement. Mutation analysis showed that the nucleophilic side chain of the Thr-192 residue at +1 of the cleavage site is required for an attack on the preceding Gly-191, after which the resulting ester bond is likely hydrolyzed. Because the cleavage site is well preserved and the hydrolysis of periplasmic CSS anti-sigma factors is widely observed, we hypothesize that cleavage via an N-O acyl rearrangement is a conserved feature of these proteins
Characterization of five novel Pseudomonas aeruginosa cell-surface signalling systems
Cell-surface signalling is a sophisticated regulatory mechanism used by Gram-negative bacteria to sense signals from outside the cell and transmit them into the cytoplasm. This regulatory system consists of an outer membrane-localized TonB-dependent receptor (TonB-dependent transducer), a cytoplasmic membrane-localized antisigma factor and an extracytoplasmic function (ECF) sigma factor. Pseudomonas aeruginosa contains 13 potential surface signalling systems of which only six have been studied in detail. In this work we have identified the regulons of five novel P. aeruginosa signalling systems. For that, the ECF sigmas PA0149, PA1912, PA2050, PA2093 and PA4896 have been overexpressed and their target gene candidates have been identified using DNA microarray, proteomic analysis, and/or lacZ reporter construct. All five ECF sigma factors control the production of one TonB-dependent transducer. Interestingly, two sigma factors, PA2050 and PA2093, regulate the synthesis of a second transducer. Furthermore, we show that although all these sigma factors seem to control putative (metal) transport systems, one of them also regulates the expression of P. aeruginosa pyocins. Finally, we also show that the PA1912-PA1911-PA1910 (designated FemI-FemR-FemA in this work) signalling system responds to the presence of the Mycobacterium siderophores mycobactin and carboxymycobactin and is involved in the utilization of these heterologous siderophores. © 2007 The Authors
- …