30 research outputs found

    Energy Expenditure and Physical Activity in Prader–Willi Syndrome Comparison With Obese Subjects

    Get PDF
    This is the peer reviewed version of the following article: Butler, Merlin G. et al. “Energy Expenditure and Physical Activity in Prader–Willi Syndrome: Comparison With Obese Subjects.” American journal of medical genetics. Part A 143A.5 (2007): 449–459., which has been published in final form at 10.1002/ajmg.a.31507. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Prader–Willi syndrome (PWS) is a complex neurodevelopmental disorder characterized by hypotonia, suck and feeding difficulties, hypogonadism, small hands and feet, developmental delay, hyperphagia and early childhood obesity and a particular facial appearance. The obesity associated with PWS is the result of a chronic imbalance between energy intake and energy expenditure (EE) due to hyperphagia, decreased physical activity, reduced metabolic rate and an inability to vomit. EE is affected by body composition as well as exercise. Individuals with PWS have a lower lean body mass (LBM) compared with controls which may contribute to reduced basal level EE. To determine the relationship among body composition, activity levels and metabolic rates, dual energy X-ray absorptiometry (DEXA) and a whole-room respiration chamber were used to measure body composition, total EE (TEE), resting EE (REE), physical activity, and mechanical work (MW) during an 8 hr monitoring period. The chamber consisted of a live-in whole-room indirect calorimeter equipped with a force platform floor to allow simultaneous measurement of EE, physical activity, and work efficiency during spontaneous activities and standardized exercise. Participants with PWS (27 with 15q11–q13 deletion and 21 with maternal disomy 15 with an average age of 23 years) had significantly decreased TEE by 20% and reduced LBM compared to 24 obese subjects. Similarly, REE was significantly reduced by 16% in the individuals with PWS relative to the comparison subjects. Total MW performed during the 8 hr monitoring period was significantly reduced by 35% in the PWS group. The energy cost of physical activity is related to the duration, intensity and type of activity and the metabolic efficiency of the individual. After adjusting group differences in LBM by analysis of variance, TEE and REE were no longer different between the two groups. Our data indicate that there is a significant reduction of EE in individuals with PWS resulting from reduced activity but also from lower energy utilization due to reduced LBM which consists primarily of muscle

    Hyperactivity in the Gunn rat model of neonatal jaundice: age-related attenuation and emergence of gait deficits

    Get PDF
    Background Neonatal jaundice resulting from elevated unconjugated bilirubin (UCB) occurs in 60–80% of newborn infants. Although mild jaundice is generally considered harmless, little is known about its long-term consequences. Recent studies have linked mild bilirubin-induced neurological dysfunction (BIND) with a range of neurological syndromes, including attention deficit-hyperactivity disorder. The goal of this study was to measure BIND across the lifespan in the Gunn rat model of BIND. Methods Using a sensitive force plate actometer, we measured locomotor activity and gait in jaundiced (jj) Gunn rats versus their non-jaundiced (Nj) littermates. Data were analyzed for young adult (3–4 months), early middle-aged (9–10 months), and late middle-aged (17–20 months) male rats. Results jj rats exhibited lower body weights at all ages and a hyperactivity that resolved at 17–20 months of age. Increased propulsive force and gait velocity accompanied hyperactivity during locomotor bouts at 9–10 months in jj rats. Stride length did not differ between the two groups at this age. Hyperactivity normalized and gait deficits, including decreased stride length, propulsive force, and gait velocity, emerged in the 17–20-month-old jj rats. Conclusions These results demonstrate that, in aging, hyperactivity decreases with the onset of gait deficits in the Gunn rat model of BIND

    TPH2 polymorphisms and expression in Prader-Willi syndrome subjects with differing genetic subtypes

    Get PDF
    Prader-Willi syndrome (PWS) is a genetic imprinting disease that causes developmental and behavioral disturbances resulting from loss of expression of genes from the paternal chromosome 15q11-q13 region. In about 70% of subjects, this portion of the paternal chromosome is deleted, while 25% have two copies of the maternal chromosome 15, or uniparental maternal disomy (UPD; the remaining subjects have imprinting center defects. There are several documented physical and behavioral differences between the two major PWS genetic subtypes (deletion and UPD) indicating the genetic subtype plays a role in clinical presentation. Serotonin is known to be disturbed in PWS and affects both eating behavior and compulsion, which are reported to be abnormal in PWS. We investigated the tryptophan hydroxylase gene (TPH2), the rate-limiting enzyme in the production of brain serotonin, by analyzing three different TPH2 gene polymorphisms, transcript expression, and correlation with PWS genetic subtype. DNA and RNA from lymphoblastoid cell lines derived from 12 PWS and 12 comparison subjects were used for the determination of genetic subtype, TPH2 polymorphisms and quantitative RT-PCR analysis. A similar frequency of TPH2 polymorphisms was seen in the PWS and comparison subjects with PWS deletion subjects showing increased expression with one or more TPH2 polymorphism. Both PWS deletion and PWS UPD subjects had significantly lower TPH2 expression than control subjects and PWS deletion subjects had significantly lower TPH2 expression compared with PWS UPD subjects. PWS subjects with 15q11-q13 deletions had lower TPH2 expression compared with PWS UPD or control subjects, requiring replication and further studies to identify the cause including identification of disturbed gene interactions resulting from the deletion process

    Gene expression in cardiac tissues from infants with idiopathic conotruncal defects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tetralogy of Fallot (TOF) is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot.</p> <p>Methods</p> <p>We employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions) and compared gene expression patterns to normally developing subjects.</p> <p>Results</p> <p>We detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV) of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation). However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, <it>p </it>= 0.017 and Notch, <it>p </it>= 0.003) appeared to be generally suppressed.</p> <p>Conclusions</p> <p>The suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.</p

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    MicroRNA-421 Dysregulation is Associated with Tetralogy of Fallot

    No full text
    The importance of microRNAs for maintaining stability in the developing vertebrate heart has recently become apparent. In addition, there is a growing appreciation for the significance of microRNAs in developmental pathology, including the formation of congenital heart defects. We examined the expression of microRNAs in right ventricular (RV) myocardium from infants with idiopathic tetralogy of Fallot (TOF, without a 22q11.2 deletion), and found 61 microRNAs to be significantly changed in expression in myocardium from children with TOF compared to normally developing comparison subjects (O’Brien et al. 2012). Predicted targets of microRNAs with altered expression were enriched for gene networks that regulate cardiac development. We previously derived a list of 229 genes known to be critical to heart development, and found 44 had significantly changed expression in TOF myocardium relative to normally developing myocardium. These 44 genes had significant negative correlations with 33 microRNAs, each of which also had significantly changed expression. Here, we focus on miR-421, as it is significantly upregulated in RV tissue from infants with TOF; is predicted to interact with multiple members of cardiovascular regulatory pathways; and has been shown to regulate cell proliferation. We knocked down, and over expressed miR-421 in primary cells derived from the RV of infants with TOF, and infants with normally developing hearts, respectively. We found a significant inverse correlation between the expression of miR-421 and SOX4, a key regulator of the Notch pathway, which has been shown to be important for the cardiac outflow track. These findings suggest that the dysregulation of miR-421 warrants further investigation as a potential contributor to tetralogy of Fallot

    Snord94 expression level alters methylation at C62 in snRNA U6.

    No full text
    Understanding the regulation of development can help elucidate the pathogenesis behind many developmental defects found in humans and other vertebrates. Evidence has shown that alternative splicing of messenger RNA (mRNA) plays a role in developmental regulation, but our knowledge of the underlying mechanisms that regulate alternative splicing are incomplete. Notably, a subset of small noncoding RNAs known as scaRNAs (small cajal body associated RNAs) contribute to spliceosome maturation and function through guiding covalent modification of spliceosomal RNAs with either methylation or pseudouridylation on specific nucleotides, but the developmental significance of these modifications is not well understood. Our focus is on one such scaRNA, known as SNORD94 or U94, that guides methylation on one specific cytosine (C62) on spliceosomal RNA U6, thus potentially altering spliceosome function during embryogenesis. We previously showed that in the myocardium of infants with heart defects, mRNA is alternatively spliced as compared to control tissues. We also demonstrated that alternatively spliced genes were concentrated in the pathways that control heart development. Furthermore, we showed that modifying expression of scaRNAs alters mRNA splicing in human cells, and zebrafish embryos. Here we present evidence that SNORD94 levels directly influence levels of methylation at its target region in U6, suggesting a potential mechanism for modifying alternative splicing of mRNA. The potential importance of scaRNAs as a developmentally important regulatory mechanism controlling alternative splicing of mRNA is unappreciated and needs more research

    The Role of scaRNAs in Adjusting Alternative mRNA Splicing in Heart Development

    No full text
    Congenital heart disease (CHD) is a leading cause of death in children &lt;1 year of age. Despite intense effort in the last 10 years, most CHDs (~70%) still have an unknown etiology. Conotruncal based defects, such as Tetralogy of Fallot (TOF), a common complex of devastating heart defects, typically requires surgical intervention in the first year of life. We reported that the noncoding transcriptome in myocardial tissue from children with TOF is characterized by significant variation in levels of expression of noncoding RNAs, and more specifically, a significant reduction in 12 small cajal body-associated RNAs (scaRNAs) in the right ventricle. scaRNAs are essential for the biochemical modification and maturation of small nuclear RNAs (spliceosomal RNAs), which in turn are critical components of the spliceosome. This is particularly important because we also documented that splicing of mRNAs that are critical for heart development was dysregulated in the heart tissue of infants with TOF. Furthermore, we went on to show, using the zebrafish model, that altering the expression of these same scaRNAs led to faulty mRNA processing and heart defects in the developing embryo. This review will examine how scaRNAs may influence spliceosome fidelity in exon retention during heart development and thus contribute to regulation of heart development
    corecore