1,009 research outputs found
Leaf water diffusion dynamics in vivo through a sub-terahertz portable imaging system
The development of terahertz based technology has given the opportunity for the realization of non destructive techniques capable of gaining meaningful information on delicate systems such as biological samples. Here, the health status of leaves in vivo has been monitored through a portable terahertz imaging system. The data have been extracted and analysed from the images acquired and compared with analogous results reported in the literature on similar systems. The possibilty of extracting additional information from the images regarding leaf details has also been explored
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Analysis of type I IFN response and T cell activation in severe COVID-19/HIV-1 coinfection. A case report
RATIONALE: Complex immune dysregulation in interferon (IFN) and T cell response has been observed in human immunodeficiency virus (HIV-1)-infected patients as well as in coronavirus disease-2019 (COVID-19) patients. However, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)/HIV-1 coinfection has been described in only few cases worldwide and no data are available on immunological outcomes in HIV-1-patients infected with SARS-CoV-2. Hence, this study aims to compare type I IFN response and T cell activation levels between a SARS-CoV-2/HIV-1-coinfected female patient and age-matched HIV-1-positive or uninfected women. PATIENT CONCERNS: A 52-year-old woman diagnosed with SARS-CoV-2/HIV-1 coinfection, ten HIV-1-positive women and five age-matched-healthy individuals were enrolled in this study. DIAGNOSES: SARS-CoV-2 infection caused severe pneumonia in the second week of illness in HIV-1-positive patient under protease inhibitors. Chest high-resolution computed tomography images of the SARS-CoV-2/HIV-1-coinfected patient showed bilateral ground-glass opacities. INTERVENTIONS: SARS-CoV-2/HIV-1-coinfected female patient under darunavir/cobicistat regimen received a 7-days hydroxychloroquine therapy. Analysis of IFNα/β mRNA levels and CD4 and CD8 T cell (CD38, human leukocyte antigen-DR [HLA-DR], CD38 HLA-DR) frequencies were performed by RT/real-time PCR assays and flow cytometry, respectively. Median relative difference (MRD) was calculated for each immunological variable. For values greater than reference, MRD should be a positive number and for values that are smaller, MRD should be negative. OUTCOMES: The severe pneumonia observed in SARS-CoV-2/HIV-1-positive patient under protease inhibitors was reversed by a 7-days hydroxychloroquine therapy. At the end of treatment, on day 7, patient reported resolution of fever, normalization of respiratory rate (14 breaths/min), and improved oxygen arterial pressure with a FiO2 of 30%. MRD values for IFNα/β and CD4 and CD8 T cells expressing CD38 and/or HLA-DR found in SARS-CoV-2-/HIV-1-coinfected woman were approximatively equal to 0 when refereed respectively to HIV-1-positive female patients [MRDs IFNα/β: median -0.2545 (range: -0.5/0.1); T cells: median -0.11 (range: -0.8/1.3)] and ≥ 6 when referred to healthy individuals [MRDs IFNα/β: median 28.45 (range: 15/41.9); T cells: median 10 (range 6/22)]. LESSONS: These results indicate that SARS-CoV-2 infection in HIV-1-positive female patient was associated with increased levels of IFNα/β-mRNAs and T cell activation compared to healthy individuals
SARS-CoV-2 diagnostics in the virology laboratory of a University Hospital in Rome during the lockdown period
Italy was one of the most affected nations by coronavirus disease 2019 outside China. The infections, initially limited to Northern Italy, spread to all other Italian regions. This study aims to provide a snapshot of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) epidemiology based on a single-center laboratory experience in Rome. The study retrospectively included 6565 subjects tested for SARS-CoV-2 at the Laboratory of Virology of Sapienza University Hospital in Rome from 6 March to 4 May. A total of 9995 clinical specimens were analyzed, including nasopharyngeal swabs, bronchoalveolar lavage fluids, gargle lavages, stools, pleural fluids, and cerebrospinal fluids. Positivity to SARS-CoV-2 was detected in 8% (527/6565) of individuals, increased with age, and was higher in male patients (P <.001). The number of new confirmed cases reached a peak on 18 March and then decreased. The virus was detected in respiratory samples, in stool and in pleural fluids, while none of gargle lavage or cerebrospinal fluid samples gave a positive result. This analysis allowed to gather comprehensive information on SARS-CoV-2 epidemiology in our area, highlighting positivity variations over time and in different sex and age group and the need for a continuous surveillance of the infection, mostly because the pandemic evolution remains unknown
Reconstruction of the gravitational wave signal during the Virgo science runs and independent validation with a photon calibrator
The Virgo detector is a kilometer-scale interferometer for gravitational wave
detection located near Pisa (Italy). About 13 months of data were accumulated
during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and
September 2011, with increasing sensitivity.
In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the
gravitational wave strain time series from the detector signals is
described. The standard consistency checks of the reconstruction are discussed
and used to estimate the systematic uncertainties of the signal as a
function of frequency. Finally, an independent setup, the photon calibrator, is
described and used to validate the reconstructed signal and the
associated uncertainties.
The uncertainties of the time series are estimated to be 8% in
amplitude. The uncertainty of the phase of is 50 mrad at 10 Hz with a
frequency dependence following a delay of 8 s at high frequency. A bias
lower than and depending on the sky direction of the GW is
also present.Comment: 35 pages, 16 figures. Accepted by CQ
Virgo calibration and reconstruction of the gravitational wave strain during VSR1
Virgo is a kilometer-length interferometer for gravitational waves detection
located near Pisa. Its first science run, VSR1, occured from May to October
2007. The aims of the calibration are to measure the detector sensitivity and
to reconstruct the time series of the gravitational wave strain h(t). The
absolute length calibration is based on an original non-linear reconstruction
of the differential arm length variations in free swinging Michelson
configurations. It uses the laser wavelength as length standard. This method is
used to calibrate the frequency dependent response of the Virgo mirror
actuators and derive the detector in-loop response and sensitivity within ~5%.
The principle of the strain reconstruction is highlighted and the h(t)
systematic errors are estimated. A photon calibrator is used to check the sign
of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz
with systematic errors estimated to 6% in amplitude. The phase error is
estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be
published in Journal of Physics Conference Series (JPCS). Second release:
correct typo
The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in
the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent
a series of upgrades, involving the exchange of the MAGIC-I camera and its
trigger system, as well as the upgrade of the readout system of both
telescopes. We use observations of the Crab Nebula taken at low and medium
zenith angles to assess the key performance parameters of the MAGIC stereo
system. For low zenith angle observations, the standard trigger threshold of
the MAGIC telescopes is ~50GeV. The integral sensitivity for point-like sources
with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula
flux in 50 h of observations. The angular resolution, defined as the sigma of a
2-dimensional Gaussian distribution, at those energies is < 0.07 degree, while
the energy resolution is 16%. We also re-evaluate the effect of the systematic
uncertainty on the data taken with the MAGIC telescopes after the upgrade. We
estimate that the systematic uncertainties can be divided in the following
components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for
the energy spectrum power-law slope.Comment: 21 pages, 25 figures, accepted for publication in Astroparticle
Physic
Calibration and sensitivity of the Virgo detector during its second science run
The Virgo detector is a kilometer-length interferometer for gravitational
wave detection located near Pisa (Italy). During its second science run (VSR2)
in 2009, six months of data were accumulated with a sensitivity close to its
design. In this paper, the methods used to determine the parameters for
sensitivity estimation and gravitational wave reconstruction are described. The
main quantities to be calibrated are the frequency response of the mirror
actuation and the sensing of the output power. Focus is also put on their
absolute timing. The monitoring of the calibration data as well as the
parameter estimation with independent techniques are discussed to provide an
estimation of the calibration uncertainties. Finally, the estimation of the
Virgo sensitivity in the frequency-domain is described and typical
sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum
Gravity (CQG), Corrigendum include
Recommended from our members
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational
waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model
(HMM) to track spin wandering. This search improves on previous HMM-based
searches of LIGO data by using an improved frequency domain matched filter, the
-statistic, and by analysing data from Advanced LIGO's second
observing run. In the frequency range searched, from to
, we find no evidence of gravitational radiation. At
, the most sensitive search frequency, we report an upper
limit on gravitational wave strain (at 95\% confidence) of when marginalising over source inclination angle. This is the
most sensitive search for Scorpius X-1, to date, that is specifically designed
to be robust in the presence of spin wandering
Swift follow-up observations of candidate gravitational-wave transient events
We present the first multi-wavelength follow-up observations of two candidate
gravitational-wave (GW) transient events recorded by LIGO and Virgo in their
2009-2010 science run. The events were selected with low latency by the network
of GW detectors and their candidate sky locations were observed by the Swift
observatory. Image transient detection was used to analyze the collected
electromagnetic data, which were found to be consistent with background.
Off-line analysis of the GW data alone has also established that the selected
GW events show no evidence of an astrophysical origin; one of them is
consistent with background and the other one was a test, part of a "blind
injection challenge". With this work we demonstrate the feasibility of rapid
follow-ups of GW transients and establish the sensitivity improvement joint
electromagnetic and GW observations could bring. This is a first step toward an
electromagnetic follow-up program in the regime of routine detections with the
advanced GW instruments expected within this decade. In that regime
multi-wavelength observations will play a significant role in completing the
astrophysical identification of GW sources. We present the methods and results
from this first combined analysis and discuss its implications in terms of
sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25,
published 2012 November 21, in ApJS, 203, 28 (
http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables;
LIGO-P1100038; Science summary at
http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
- …