23 research outputs found

    Effects of intraduodenal or intragastric administration of a bitter hop extract (Humulus lupulus L.), on upper gut motility, gut hormone secretion and energy intake in healthy-weight men

    Get PDF
    Gastrointestinal functions, particularly pyloric motility and the gut hormones, cholecystokinin and peptide YY, contribute to the regulation of acute energy intake. Bitter tastants modulate these functions, but may, in higher doses, induce GI symptoms. The aim of this study was to evaluate the effects of both dose and delivery location of a bitter hop extract (BHE) on antropyloroduodenal pressures, plasma cholecystokinin and peptide YY, appetite perceptions, gastrointestinal symptoms and energy intake in healthy-weight men. The study consisted of two consecutive parts, with part A including n = 15, and part B n = 11, healthy, lean men (BMI 22.6 ± 1.1 kg/m2 , aged 25 ± 3 years). In randomised, double-blind fashion, participants received in part A, BHE in doses of either 100 mg (“ID-BHE-100”) or 250 mg (“ID-BHE-250”), or vehicle (canola oil; “ID-control”) intraduodenally, or in part B, 250 mg BHE (“IG-BHE-250”) or vehicle (“IG-control”) intragastrically. Antropyloroduodenal pressures, hormones, appetite and symptoms were measured for 180 min, energy intake from a standardised buffet-meal was quantified subsequently. ID-BHE-250, but not ID-BHE-100, had modest, and transient, effects to stimulate pyloric pressures during the first 90 min (P < 0.05), and peptide YY from t = 60 min (P < 0.05), but did not affect antral or duodenal pressures, cholecystokinin, appetite, gastrointestinal symptoms or energy intake. IG-BHE-250 had no detectable effects. In conclusion, BHE, when administered intraduodenally, in the selected higher dose, modestly affected some appetite-related gastrointestinal functions, but had no detectable effects when given in the lower dose or intragastrically. Thus, BHE, at none of the doses or routes of administration tested, has appetite- or energy intake-suppressant effects.Vida Bitarafan, Penelope C.E. Fitzgerald, Sally D. Poppitt, John R. Ingram, Christine Feinle-Bisse

    Intraduodenal administration of L-valine has no effect on antropyloroduodenal pressures, plasma cholecystokinin concentrations or energy intake in healthy, lean men

    Get PDF
    Whey protein is rich in the branched-chain amino acids, L-leucine, L-isoleucine and L-valine. Thus, branched-chain amino acids may, at least in part, mediate the effects of whey to reduce energy intake and/or blood glucose. Notably, 10 g of either L-leucine or L-isoleucine, administered intragastrically before a mixed-nutrient drink, lowered postprandial blood glucose, and intraduodenal infusion of L-leucine (at a rate of 0.45 kcal/min, total: 9.9 g) lowered fasting blood glucose and reduced energy intake from a subsequent meal. Whether L-valine affects energy intake, and the gastrointestinal functions involved in the regulation of energy intake, as well as blood glucose, in humans, is currently unknown. We investigated the effects of intraduodenally administered L-valine on antropyloroduodenal pressures, plasma cholecystokinin, blood glucose and energy intake. Twelve healthy lean men (age: 29 ± 2 years, BMI: 22.5 ± 0.7 kg/m²) were studied on 3 separate occasions in randomised, double-blind order. Antropyloroduodenal pressures, plasma cholecystokinin, blood glucose, appetite perceptions and gastrointestinal symptoms were measured during 90-min intraduodenal infusions of L-valine at 0.15 kcal/min (total: 3.3 g) or 0.45 kcal/min (total: 9.9 g), or 0.9% saline (control). Energy intake from a buffet-meal immediately after the infusions was quantified. L-valine did not affect antral, pyloric (mean number; control: 14 ± 5; L-Val-0.15: 21 ± 9; L-Val-0.45: 11 ± 4), or duodenal pressures, plasma cholecystokinin (mean concentration, pmol/L; control: 3.1 ± 0.3; L-Val-0.15: 3.2 ± 0.3; L-Val-0.45: 3.0 ± 0.3), blood glucose, appetite perceptions, symptoms or energy intake (kcal; control: 1040 ± 73; L-Val-0.15: 1040 ± 81; L-Val-0.45: 1056 ± 100), at either load (p > 0.05 for all). In conclusion, intraduodenal infusion of L-valine, at loads that are moderately (3.3 g) or substantially (9.9 g) above World Health Organization valine requirement recommendations, does not appear to have energy intake- or blood glucose-lowering effects.Rachel A. Elovaris, Penelope C. E. Fitzgerald, Vida Bitarafan, Sina S. Ullrich, Michael Horowitz and Christine Feinle-Bisse

    Quinine effects on gut and pancreatic hormones and antropyloroduodenal pressures in humans-Role of delivery site and sex.

    Get PDF
    Advance access publication 24 March 2022Context: The bitter substance quinine modulates the release of a number of gut and gluco-regulatory hormones and upper gut motility. As the density of bitter receptors may be higher in the duodenum than the stomach, direct delivery to the duodenum may be more potent in stimulating these functions. The gastrointestinal responses to bitter compounds may also be modified by sex. Background: We have characterized the effects of intragastric (IG) versus intraduodenal (ID) administration of quinine hydrochloride (QHCl) on gut and pancreatic hormones and antropyloroduodenal pressures in healthy men and women. Methods: 14 men (26 ± 2 years, BMI: 22.2 ± 0.5 kg/m2) and 14 women (28 ± 2 years, BMI: 22.5 ± 0.5 kg/m2) received 600 mg QHCl on 2 separate occasions, IG or ID as a 10-mL bolus, in randomized, double-blind fashion. Plasma ghrelin, cholecystokinin, peptide YY, glucagon-like peptide-1 (GLP-1), insulin, glucagon, and glucose concentrations and antropyloroduodenal pressures were measured at baseline and for 120 minutes following QHCl. Results: Suppression of ghrelin (P = 0.006), stimulation of cholecystokinin (P = 0.030), peptide YY (P = 0.017), GLP-1 (P = 0.034), insulin (P = 0.024), glucagon (P = 0.030), and pyloric pressures (P = 0.050), and lowering of glucose (P = 0.001) were greater after ID-QHCl than IG-QHCl. Insulin stimulation (P = 0.021) and glucose reduction (P = 0.001) were greater in females than males, while no sex-associated effects were found for cholecystokinin, peptide YY, GLP-1, glucagon, or pyloric pressures. Conclusion: ID quinine has greater effects on plasma gut and pancreatic hormones and pyloric pressures than IG quinine in healthy subjects, consistent with the concept that stimulation of small intestinal bitter receptors is critical to these responses. Both insulin stimulation and glucose lowering were sex-dependent.Peyman Rezaie, Vida Bitarafan, Braden D. Rose, Kylie Lange, Jens F. Rehfeld, Michael Horowitz, and Christine Feinle-Bisse

    Effects of intraduodenal infusion of the bitter tastant, quinine, on antropyloroduodenal motility, plasma cholecystokinin, and energy intake in healthy men

    Get PDF
    Background/Aims:Nutrient-induced gut hormone release (eg, cholecystokinin [CCK]) and the modulation of gut motility (particularly pyloric stimulation) contribute to the regulation of acute energy intake. Non-caloric bitter compounds, including quinine, have recently been shown in cell-line and animal studies to stimulate the release of gastrointestinal hormones by activating bitter taste receptors expressed throughout the gastrointestinal tract, and thus, may potentially suppress energy intake without providing additional calories. This study aims to evaluate the effects of intraduodenally administered quinine on antropyloroduodenal pressures, plasma CCK and energy intake. Methods:Fourteen healthy, lean men (25 ± 5 years; BMI: 22.5 ± 2.0 kg/m2) received on 4 separate occasions, in randomized, double-blind fashion, 60-minute intraduodenal infusions of quinine hydrochloride at doses totaling 37.5 mg ("Q37.5"), 75 mg ("Q75") or 225 mg ("Q225"), or control (all 300 mOsmol). Antropyloroduodenal pressures (high-resolution manometry), plasma CCK (radioimmunoassay), and appetite perceptions/gastrointestinal symptoms (visual analog questionnaires) were measured. Ad libitum energy intake (buffet-meal) was quantified immediately post-infusion. Oral quinine taste-thresholds were assessed on a separate occasion using 3-alternative forced-choice procedure. Results:All participants detected quinine orally (detection-threshold: 0.19 ± 0.07 mmol/L). Intraduodenal quinine did not affect antral, pyloric or duodenal pressures, plasma CCK (pmol/L [peak]; control: 3.6 ± 0.4, Q37.5: 3.6 ± 0.4, Q75: 3.7 ± 0.3, Q225: 3.9 ± 0.4), appetite perceptions, gastrointestinal symptoms or energy intake (kcal; control: 1088 ± 90, Q37.5: 1057 ± 69, Q75: 1029 ±7 0, Q225: 1077 ± 88). Conclusions:Quinine, administered intraduodenally over 60 minutes, even at moderately high doses, but low infusion rates, does not modulate appetite-related gastrointestinal functions or energy intake.Vida Bitarafan, Penelope C E Fitzgerald, Tanya J Little, Wolfgang Meyerhof, Tongzhi Wu, Michael Horowitz and Christine Feinle-Bisse

    Effects of intragastric vs. intraduodenal administration of the bitter compound, quinine, on the glycaemic response to, and slowing of gastric emptying of, a mixed-nutrient drink, in healthy men

    No full text
    Poster presentation 102Braden Rose, Peyman Rezaie, Vida Bitarafan, Penelope Fitzgerald, Michael Horowitz, Christine Feinle-Bisse

    Comparative effects of the branched-chain amino acids, leucine, isoleucine and valine, on gastric emptying, plasma glucose, c-peptide and glucagon in healthy men

    Get PDF
    (1) Background: Whey protein lowers postprandial blood glucose in health and type 2 diabetes, by stimulating insulin and incretin hormone secretion and slowing gastric emptying. The branched-chain amino acids, leucine, isoleucine and valine, abundant in whey, may mediate the glucoregulatory effects of whey. We investigated the comparative effects of intragastric administration of leucine, isoleucine and valine on the plasma glucose, C-peptide and glucagon responses to and gastric emptying of a mixed-nutrient drink in healthy men. (2) Methods: 15 healthy men (27 ± 3 y) received, on four separate occasions, in double-blind, randomised fashion, either 10 g of leucine, 10 g of isoleucine, 10 g of valine or control, intragastrically, 30 min before a mixed-nutrient drink. Plasma glucose, C-peptide and glucagon concentrations were measured before, and for 2 h following, the drink. Gastric emptying of the drink was quantified using 13C-acetate breath-testing. (3) Results: Amino acids alone did not affect plasma glucose or C-peptide, while isoleucine and valine, but not leucine, stimulated glucagon (p &lt; 0.05), compared with control. After the drink, isoleucine and leucine reduced peak plasma glucose compared with both control and valine (all p &lt; 0.05). Neither amino acid affected early (t = 0–30 min) postprandial C-peptide or glucagon. While there was no effect on overall gastric emptying, plasma glucose at t = 30 min correlated with early gastric emptying (p &lt; 0.05). (4) Conclusion: In healthy individuals, leucine and isoleucine lower postprandial blood glucose, at least in part by slowing gastric emptying, while valine does not appear to have an effect, possibly due to glucagon stimulation.Rachel A. Elovaris, Vida Bitarafan, Shahram Agah, Sina S. Ullrich, Kylie Lange, Michael Horowitz and Christine Feinle-Bisse

    Association between Dietary Macronutrient Intake and Symptoms in Uninvestigated Dyspepsia: Evidence from a Population-Based, Cross-Sectional Study

    Get PDF
    (1) Background: Limited evidence from laboratory-based studies suggests that specific dietary macronutrients, particularly fat, can induce dyspeptic symptoms. Through a population-based study, we investigated the relationship between dietary macronutrients and dyspeptic symptoms and sought to determine macronutrient intake thresholds to predict or prevent dyspepsia and reduce symptoms in patients with dyspepsia. (2) Methods: A total of 4763 Iranian people were enrolled in this population-based, cross-sectional study. Uninvestigated dyspepsia (UD) and its symptoms, including postprandial fullness, early satiation, and epigastric pain, were evaluated using a modified Persian version of the Rome III criteria. The dietary intakes of participants were evaluated using a validated food–frequency questionnaire. Receiver operating characteristic (ROC) curve analysis was used to calculate threshold intakes of dietary macronutrients to prevent UD in the general population. The analysis was then repeated in those with UD to calculate intake thresholds for reducing UD symptoms. (3) Results: Early satiation occurred in 6.3% (n = 302), postprandial fullness in 8.0% (n = 384) and epigastric pain in 7.8% (n = 371) of participants. The prevalence of UD was 15.2%. Compared with individuals without UD, those with UD had a lower intake of carbohydrates (48.2% vs. 49.1%) and a higher intake of fats (38.3% vs. 37.4%), while protein and energy intakes did not differ. Higher dietary fat and protein intakes were associated with a higher prevalence of postprandial fullness and epigastric pain, respectively. Macronutrient intakes to predict UD in the general population were 14.7% from protein, and >37.7% from fats. Carbohydrate, protein, and fat intakes to prevent symptoms among those with UD were calculated to be >48.2%, <14.6%, and <38.6%, respectively. (4) Conclusion: Higher carbohydrate intake and lower fat or protein intakes were associated with a lower likelihood of UD. Prospective studies carefully manipulating dietary macronutrient composition are warranted to investigate the value of dietary changes to improve symptoms in people with UD.Shahram Agah, Azadeh Aminianfar, Ammar Hassanzadeh Keshteli, Vida Bitarafan, Peyman Adibi, Ahmad Esmaillzadeh, and Christine Feinle-Bisse

    Intragastric administration of the bitter tastant, quinine, lowers the glycemic response to a nutrient drink without slowing gastric emptying, in healthy men.

    No full text
    Gastric emptying and the release of gastrointestinal (GI) hormones are major determinants of postprandial blood glucose concentrations and energy intake. Preclinical studies suggest that activation of GI bitter taste receptors potently stimulates GI hormones, including glucagon-like peptide-1 (GLP-1), thus, may reduce postprandial glucose and energy intake. We evaluated the effects of intragastric quinine on the glycemic response to, and gastric emptying of, a mixed-nutrient drink, and on subsequent energy intake, in healthy men. The study consisted of two parts; part A included 15, and part B 12, lean men (aged 26±2 years). In each part, participants received, on 3 separate occasions, in double-blind, randomized fashion, intragastric quinine (275 mg or 600 mg), or control, 30 min before a mixed-nutrient drink (part A), or before a buffet-meal (part B). In part A, plasma glucose, insulin, glucagon and GLP-1 concentrations were measured at baseline, after quinine alone, and for 2 h following the drink. Gastric emptying of the drink was also measured. In part B, energy intake at the buffet-meal was quantified. Q600 and Q275 alone stimulated insulin modestly (P<0.05). After the drink, Q600 and Q275 reduced plasma glucose and stimulated insulin (P<0.05), Q275 stimulated GLP-1 (P<0.05), and Q600 tended to stimulate GLP-1 (P=0.066) and glucagon (P=0.073), compared with control. Quinine did not affect gastric emptying of the drink or energy intake. In conclusion, in healthy men, intragastric quinine reduces postprandial blood glucose and stimulates insulin and GLP-1, but does not slow gastric emptying, or reduce energy intake, under our experimental conditions.Vida Bitarafan, Penelope C. E. Fitzgerald, Tanya J. Little, Wolfgang Meyerhof, Karen L. Jones, Tongzhi Wu, Michael Horowitz and Christine Feinle-Bisse
    corecore