23 research outputs found

    Aorto-ventricular tunnel

    Get PDF
    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta

    The program for biodiversity research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation

    Get PDF
    The Program for Biodiversity Research (PPBio) is an innovative program designed to integrate all biodiversity research stakeholders. Operating since 2004, it has installed long-term ecological research sites throughout Brazil and its logic has been applied in some other southern-hemisphere countries. The program supports all aspects of research necessary to understand biodiversity and the processes that affect it. There are presently 161 sampling sites (see some of them at Supplementary Appendix), most of which use a standardized methodology that allows comparisons across biomes and through time. To date, there are about 1200 publications associated with PPBio that cover topics ranging from natural history to genetics and species distributions. Most of the field data and metadata are available through PPBio web sites or DataONE. Metadata is available for researchers that intend to explore the different faces of Brazilian biodiversity spatio-temporal variation, as well as for managers intending to improve conservation strategies. The Program also fostered, directly and indirectly, local technical capacity building, and supported the training of hundreds of undergraduate and graduate students. The main challenge is maintaining the long-term funding necessary to understand biodiversity patterns and processes under pressure from global environmental changes

    Epidemic HI2 Plasmids Mobilising the Carbapenemase Gene <i>bla</i><sub>IMP-4</sub> in Australian Clinical Samples Identified in Multiple Sublineages of <i>Escherichia coli</i> ST216 Colonising Silver Gulls.

    Full text link
    Escherichia coli ST216, including those that carry blaKPC-2, blaFOX-5, blaCTX-M-15 and mcr-1, have been linked to wild and urban-adapted birds and the colonisation of hospital environments causing recalcitrant, carbapenem-resistant human infections. Here we sequenced 22 multiple-drug resistant ST216 isolates from Australian silver gull chicks sampled from Five Islands, of which 21 carried nine or more antibiotic resistance genes including blaIMP-4 (n = 21), blaTEM-1b (n = 21), aac(3)-IId (n = 20), mph(A) (n = 20), catB3 (n = 20), sul1 (n = 20), aph(3")-Ib (n = 18) and aph(6)-Id (n = 18) on FIB(K) (n = 20), HI2-ST1 (n = 11) and HI2-ST3 (n = 10) plasmids. We show that (i) all HI2 plasmids harbour blaIMP-4 in resistance regions containing In809 flanked by IS26 (HI2-ST1) or IS15DI (HI2-ST3) and diverse metal resistance genes; (ii) HI2-ST1 plasmids are highly related to plasmids reported in diverse Enterobacteriaceae sourced from humans, companion animals and wildlife; (iii) HI2 were a feature of the Australian gull isolates and were not observed in international ST216 isolates. Phylogenetic analyses identified close relationships between ST216 from Australian gull and clinical isolates from overseas. E. coli ST216 from Australian gulls harbour HI2 plasmids encoding resistance to clinically important antibiotics and metals. Our studies underscore the importance of adopting a one health approach to AMR and pathogen surveillance

    Escherichia coli ST457: an emerging extended-spectrum ÎČ-lactam resistant lineage with reservoirs in wildlife and food-producing animals.

    Full text link
    Silver gulls carry phylogenetically diverse Escherichia coli including globally dominant ExPEC sequence types and pandemic ExPEC-ST131 clades, however our large-scale study (504 samples) on silver gulls nesting off the coast of New South Wales identified E. coli ST457 as the most prevalent. A phylogenetic analysis of whole-genome sequences (WGS) of 138 ST457 comprising of 42 from gulls, two from humans (Australia) and 14 from poultry farmed in Paraguay were compared with 80 WGS deposited in public databases from diverse sources and countries. E. coli ST457 strains are phylogenetic group F, carry fimH145 and partition into five main clades in accordance to predominant flagella H-antigen carriage. Although we identified considerable phylogenetic diversity among the 138 ST457 strains, closely related subclades (< 100 SNPs) suggested zoonotic or zooanthroponosis transmission between humans, wild birds and food-producing animals. Australian human clinical and gull strains in two of the clades were closely related (≀ 80 SNPs). Regarding plasmid content, country or country-source specific connections were observed including I1/ST23, I1/ST314 and I1/ST315 disseminating bla CMY-2 in Australia, I1/ST113 carrying bla CTX-M-8 and mcr-5 in Paraguayan poultry and F2:A-:B1 plasmids of Dutch origin across multiple ST457 clades. We identified a high prevalence of nearly identical I1/ST23 plasmids carrying bla CMY-2 among Australian gull and clinical human strains. In summary, ST457 is a broad host range, geographically-diverse E. coli lineage that can cause human extraintestinal disease including urinary tract infection and displays a remarkable ability to capture mobile elements that carry and transmit genes encoding resistance to critically important antibiotics

    Stepwise Disaggregation of SMAP Soil Moisture at 100 m Resolution Using Landsat-7/8 Data and a Varying Intermediate Resolution

    Full text link
    International audienceGlobal soil moisture (SM) products are currently available from passive microwave sensors at typically 40 km spatial resolution. Although recent efforts have been made to produce 1 km resolution data from the disaggregation of coarse scale observations, the targeted resolution of available SM data is still far from the requirements of fine-scale hydrological and agricultural studies. To fill the gap, a new disaggregation scheme of Soil Moisture Active and Passive (SMAP) data is proposed at 100 m resolution by using the disaggregation based on physical and theoretical scale change (DISPATCH) algorithm. The main objectives of this paper is (i) to implement DISPATCH algorithm at 100 m resolution using SMAP SM and Landsat land surface temperature and vegetation index data and (ii) to investigate the usefulness of an intermediate spatial resolution (ISR) between the SMAP 36 km resolution and the targeted 100 m resolution. The sequential disaggregation approach from 36 km to ISR (ranging from 1 km to 30 km) and from ISR to 100 m resolution is evaluated over 22 irrigated field crops in central Morocco using in-situ SM measurements collected from January to May 2016. The lowest root mean square difference (RMSD) between the 100 m resolution disaggregated and in-situ SM is obtained when the ISR is around 10 km. Therefore, the two-step disaggregation is more efficient than the direct disaggregation from SMAP to 100 m resolution. Moreover, we propose a moving average window algorithm to increase the accuracy in the 100 m resolution SM as well as to reduce the low-resolution boxy artifacts on disaggregated images. The correlation coefficient between 100 m resolution disaggregated and in situ SM ranges between 0.5-0.9 for four out of the six extensive sampling dates. This methodology relies solely on remote sensing data and can be easily implemented to monitor SM at a high spatial resolution over irrigated regions
    corecore