122 research outputs found

    Femtosecond laser-induced quantum-beat superfluorescence of atomic oxygen in a flame

    Get PDF
    Among different approaches to generate mirrorless lasing, resonant multiphoton pumping of gas constituents by deep-UV laser pulses exhibits so far the highest efficiency and produces measurable lasing energies, but the underlying mechanism was not yet fully settled. Here, we report lasing generation from atomic oxygen in a methane-air flame via femtosecond two-photon excitation. Temporal profiles of the lasing pulses were measured for varying concentrations of atomic oxygen, which shows that the peak intensity and time delay of the lasing pulse approximately scales as N and 1/N, respectively, where N represents the concentration. These scaling laws match well with the prediction of oscillatory superfluorescence (SF), indicating that the lasing we observed is essentially SF rather than amplified spontaneous emission. In addition, the quantum-beating effect was also observed in the time-resolved lasing pulse. A theoretical simulation based on nonadiabatic Maxwell-Bloch equations well reproduces the experimental observations of the temporal dynamics of the lasing pulses. These results on fundamentals should be beneficial for the better design and applications of lasing-based techniques

    SDN-controlled and Orchestrated OPSquare DCN Enabling Automatic Network Slicing with Differentiated QoS Provisioning

    Get PDF
    In this work, we propose and experimentally assess the automatic and flexible NSs configurations of optical OPSquare DCN controlled and orchestrated by an extended SDN control plane for multi-tenant applications with differentiated QoS provisioning. Optical Flow Control (OFC) protocol has been developed to prevent packet losses at switch sides caused by packet contentions.Based on the collected resource topology of data plane, the optical network slices can be dynamically provisioned and automatically reconfigured by the SDN control plane. Meanwhile, experimental results validate that the priority assignment of application flows supplies dynamic QoS performance to various slices running applications with specific requirements in terms of packet loss and transmission latency. In addition, the capability of exposing traffic statistics information of data plane to SDN control plane enables the implementation of load balancing algorithms further improving the network performance with high QoS. No packet loss and less than 4.8 us server-to-server latency can be guaranteed for the sliced network with highest priority at a load of 0.5

    Spawns Structure of Rod-Like ZnO Wrapped in Cellulose Nanofibers for Electromagnetic Wave Absorption

    Get PDF
    Spawns structure of rod-like ZnO wrapped in the cellulose nanofibers was successfully fabricated through a facile one-step hydrothermal method, and their electromagnetic wave absorption properties were investigated. The structure and properties of the composite aerogel were characterized. The enlarged morphology images showed that the as-prepared cellulose nanofiber/ZnO samples were spawns structure of rod-like ZnO wrapped in the cellulose nanofibers. The composite aerogel in a wax matrix exhibited excellent electromagnetic wave absorption performance over 2–18 GHz. The widest absorption bandwidth of 30 wt% contained with reflection loss values less than −10 dB was up to 12 GHz (6–18 GHz) at the thickness of 5.5 mm and the minimum reflection loss value reached −26.32 dB at 15.2 GHz when the thickness of the absorber was 3 mm
    • …
    corecore