7 research outputs found

    Monitoring of alien mosquitoes in Western Austria (Tyrol, Austria, 2018).

    No full text
    Mosquitoes are of major importance to human and animal health due to their ability to transmit various pathogens. In Europe the role of mosquitoes in public health has increased with the introduction of alien Aedes mosquitoes such as the Asian tiger mosquito, Aedes albopictus; the Asian bush mosquito, Ae. japonicus; and Ae. koreicus. In Austria, Ae. japonicus has established populations in various regions of the country. Aedes albopictus is not known to overwinter in Austria, although isolated findings of eggs and adult female mosquitoes have been previously reported, especially in Tyrol. Aedes koreicus had not so far been found in Austria. Within the framework of an alien mosquito surveillance program in the Austrian province of Tyrol, ovitraps were set up weekly from May to October, 2018, at 67 sites- 17 in East Tyrol and 50 in North Tyrol. Sampling was performed at highways and at urban and rural areas. DNA obtained from mosquito eggs was barcoded using molecular techniques and sequences were analysed to species level. Eggs of alien Aedes species were found at 18 out of 67 sites (27%). Both Ae. albopictus and Ae. japonicus were documented at highways and urban areas in both East and North Tyrol. Aedes koreicus was found in East Tyrol. During this mosquito surveillance program, eggs of Ae. albopictus, Ae. japonicus, and Ae. koreicus were documented in the Austrian province of Tyrol. These findings not only show highways to be points of entry, but also point to possible establishment processes of Ae. japonicus in Tyrol. Moreover, Ae. koreicus was documented in Austria for the first time

    Emergence of Parafilaria bovicola in Austria

    No full text
    Veterinarians reported cases of cutaneous bleeding in cattle in Austria in the spring and summer of 2020. It was our goal to confirm the tentative diagnosis of parafilariosis by identifying Parafilaria bovicola in exudate samples using molecular methods for the first time in Austria. We asked veterinarians in the field to collect exudate from typical lesions on cattle. We performed polymerase chain reactions (PCRs) and sequenced a 674-bp section of the mitochondrial cytochrome oxidase subunit I in all positive samples. Overall, in 57 of 86 samples, P. bovicola was confirmed by PCR in cattle from Lower Austria, Upper Austria, Styria, Salzburg, Carinthia, and Tyrol. Sequencing detected four different haplotypes or genotypes, respectively, indicating multiple routes of introduction. We conclude that parafilariosis has spread in Austria and we expect that the number of reports of clinical signs and losses due to carcass damage will increase in the future

    Barcoding of the Genus Culicoides (Diptera: Ceratopogonidae) in Austria—An Update of the Species Inventory Including the First Records of Three Species in Austria

    No full text
    Ceratopogonidae are small nematoceran Diptera with a worldwide distribution, consisting of more than 5400 described species, divided into 125 genera. The genus Culicoides is known to comprise hematophagous vectors of medical and veterinary importance. Diseases transmitted by Culicoides spp. Such as African horse sickness virus, Bluetongue virus, equine encephalitis virus (Reoviridae) and Schmallenberg virus (Bunyaviridae) affect large parts of Europe and are strongly linked to the spread and abundance of its vectors. However, Culicoides surveillance measures are not implemented regularly nor in the whole of Austria. In this study, 142 morphologically identified individuals were chosen for molecular analyses (barcoding) of the mitochondrial cytochrome c oxidase subunit I gene (mt COI). Molecular analyses mostly supported previous morphologic identification. Mismatches between results of molecular and morphologic analysis revealed three new Culicoides species in Austria, Culicoides gornostaevae Mirzaeva, 1984, which is a member of the Obsoletus group, C. griseidorsum Kieffer, 1918 and C. pallidicornis Kieffer, 1919 as well as possible cryptic species. We present here the first Austrian barcodes of the mt COI region of 26 Culicoides species and conclude that barcoding is a reliable tool with which to support morphologic analysis, especially with regard to the difficult to identify females of the medically and economically important genus Culicoides

    First Nationwide Monitoring Program for the Detection of Potentially Invasive Mosquito Species in Austria

    No full text
    In Austria, only fragmented information on the occurrence of alien and potentially invasive mosquito species exists. The aim of this study is a nationwide overview on the situation of those mosquitoes in Austria. Using a nationwide uniform protocol for the first time, mosquito eggs were sampled with ovitraps at 45 locations in Austria at weekly intervals from May to October 2020. The sampled eggs were counted and the species were identified by genetic analysis. The Asian tiger mosquito Aedes albopictus was found at two sites, once in Tyrol, where this species has been reported before, and for the first time in the province of Lower Austria, at a motorway rest stop. The Asian bush mosquito Aedes japonicus was widespread in Austria. It was found in all provinces and was the most abundant species in the ovitraps by far. Aedes japonicus was more abundant in the South than in the North and more eggs were found in habitats with artificial surfaces than in (semi-) natural areas. Further, the number of Ae. japonicus eggs increased with higher ambient temperature and decreased with higher wind speed. The results of this study will contribute to a better estimation of the risk of mosquito-borne disease in Austria and will be a useful baseline for a future documentation of changes in the distribution of those species

    Molecular analysis of blood-associated pathogens in European wildcats (Felis silvestris silvestris) from Germany

    No full text
    European wildcats (Felis silvestris silvestris) have not been investigated in large numbers for blood-associated pathogens in Germany, because wildcats, being a protected species, may not be hunted, and the collection of samples is therefore difficult. Thus, spleen tissue and whole blood from 96 wildcats from Germany found as roadkill or dead from other causes in the years 1998-2020 were examined for the prevalence of blood associated pathogens using molecular genetic tools. PCR was used to screen for haemotrophic Mycoplasma spp., Hepatozoon spp., Cytauxzoon spp., Bartonella spp., Filarioidea, Anaplasmataceae, and Rickettsiales, and positive samples were subsequently sequenced. Phylogenetic analyses were performed for Mycoplasma spp. and Hepatozoon spp. by calculating phylogenetic trees and DNA haplotype networks. The following pathogens were found: Candidatus Mycoplasma haematominutum (7/96), Mycoplasma ovis (1/96), Hepatozoon silvestris (34/96), Hepatozoon felis (6/96), Cytauxzoon europaeus (45/96), and Bartonella spp. (3/96). This study elucidates the prevalence of blood-associated pathogens in wildcats from Germany

    Molecular pathogen screening of louse flies (Diptera: Hippoboscidae) from domestic and wild ruminants in Austria

    No full text
    Hippoboscid flies (Diptera: Hippoboscidae), also known as louse flies or keds, are obligate blood-sucking ectoparasites of animals, and accidentally of humans. The potential role of hippoboscids as vectors of human and veterinary pathogens is being increasingly investigated, but the presence and distribution of infectious agents in louse flies is still unknown in parts of Europe. Here, we report the use of molecular genetics to detect and characterize vector-borne pathogens in hippoboscid flies infesting domestic and wild animals in Austria.Louse flies were collected from naturally infested cattle (n = 25), sheep (n = 3), and red deer (n = 12) across Austria between 2015 and 2019. Individual insects were morphologically identified to species level and subjected to DNA extraction for molecular pathogen screening and barcoding. Genomic DNA from each louse fly was screened for Borrelia spp., Bartonella spp., Trypanosomatida, Anaplasmataceae, Filarioidea and Piroplasmida. Obtained sequences of Trypanosomatida and Bartonella spp. were further characterized by phylogenetic and haplotype networking analyses.A total of 282 hippoboscid flies corresponding to three species were identified: Hippobosca equina (n = 62) collected from cattle, Melophagus ovinus (n = 100) from sheep and Lipoptena cervi (n = 120) from red deer (Cervus elaphus). Molecular screening revealed pathogen DNA in 54.3% of hippoboscids, including infections with single (63.39%), two (30.71%) and up to three (5.90%) distinct pathogens in the same individual. Bartonella DNA was detected in 36.9% of the louse flies. Lipoptena cervi were infected with 10 distinct and previously unreported Bartonella sp. haplotypes, some closely associated with strains of zoonotic potential. DNA of trypanosomatids was identified in 34% of hippoboscids, including the first description of Trypanosoma sp. in H. equina. Anaplasmataceae DNA (Wolbachia spp.) was detected only in M. ovinus (16%), while < 1% of the louse flies were positive for Borrelia spp. and Filarioidea. All hippoboscids were negative for Piroplasmida.Molecular genetic screening confirmed the presence of several pathogens in hippoboscids infesting domestic and wild ruminants in Austria, including novel pathogen haplotypes of zoonotic potential (e.g. Bartonella spp.) and the first report of Trypanosoma sp. in H. equina, suggesting a potential role of this louse fly as vector of animal trypanosomatids. Experimental transmission studies and expanded monitoring of hippoboscid flies and hippoboscid-associated pathogens are warranted to clarify the competence of these ectoparasites as vectors of infectious agents in a One-Health context.Hippoboscid flies (Diptera: Hippoboscidae), also known as louse flies or keds, are obligate blood-sucking ectoparasites of animals, and accidentally of humans. The potential role of hippoboscids as vectors of human and veterinary pathogens is being increasingly investigated, but the presence and distribution of infectious agents in louse flies is still unknown in parts of Europe. Here, we report the use of molecular genetics to detect and characterize vector-borne pathogens in hippoboscid flies infesting domestic and wild animals in Austria.Louse flies were collected from naturally infested cattle (n = 25), sheep (n = 3), and red deer (n = 12) across Austria between 2015 and 2019. Individual insects were morphologically identified to species level and subjected to DNA extraction for molecular pathogen screening and barcoding. Genomic DNA from each louse fly was screened for Borrelia spp., Bartonella spp., Trypanosomatida, Anaplasmataceae, Filarioidea and Piroplasmida. Obtained sequences of Trypanosomatida and Bartonella spp. were further characterized by phylogenetic and haplotype networking analyses.A total of 282 hippoboscid flies corresponding to three species were identified: Hippobosca equina (n = 62) collected from cattle, Melophagus ovinus (n = 100) from sheep and Lipoptena cervi (n = 120) from red deer (Cervus elaphus). Molecular screening revealed pathogen DNA in 54.3% of hippoboscids, including infections with single (63.39%), two (30.71%) and up to three (5.90%) distinct pathogens in the same individual. Bartonella DNA was detected in 36.9% of the louse flies. Lipoptena cervi were infected with 10 distinct and previously unreported Bartonella sp. haplotypes, some closely associated with strains of zoonotic potential. DNA of trypanosomatids was identified in 34% of hippoboscids, including the first description of Trypanosoma sp. in H. equina. Anaplasmataceae DNA (Wolbachia spp.) was detected only in M. ovinus (16%), while < 1% of the louse flies were positive for Borrelia spp. and Filarioidea. All hippoboscids were negative for Piroplasmida.Molecular genetic screening confirmed the presence of several pathogens in hippoboscids infesting domestic and wild ruminants in Austria, including novel pathogen haplotypes of zoonotic potential (e.g. Bartonella spp.) and the first report of Trypanosoma sp. in H. equina, suggesting a potential role of this louse fly as vector of animal trypanosomatids. Experimental transmission studies and expanded monitoring of hippoboscid flies and hippoboscid-associated pathogens are warranted to clarify the competence of these ectoparasites as vectors of infectious agents in a One-Health context
    corecore