15 research outputs found

    Pathophysiological mechanism of long-term noninvasive ventilation in stable hypercapnic patients with COPD using functional respiratory imaging

    No full text
    Abstract: Introduction: Patients with severe COPD often develop chronic hypercapnic respiratory failure. Their prognosis worsens and they are more likely to develop exacerbations. This has major influence on the health-related quality of life. Currently, there is no information about the success of long-term noninvasive ventilation (NIV) among patients who receive NIV in acute settings. Also, little is known about the pathophysiological mechanism of NIV. Methods: Ten Global Initiative for Obstructive Lung Disease stage III and IV COPD patients with respiratory failure who were hospitalized following acute exacerbation were treated with NIV using a Synchrony BiPAP device for 6 months. Arterial blood gases and lung function parameters were measured. Low-dose computed tomography of the thorax was performed and used for segmentation. Further analyses provided lobe volume, airway volume, and airway resistance, giving an overall functional description of the separate airways and lobes. Ventilation perfusion (VQ) was calculated. Patient-reported outcomes were evaluated. Results: PaCO2 significantly improved from 50.03 mmHg at baseline to 44.75 mmHg after 1 month and 43.37 mmHg after 6 months (P=0.006). Subjects showed improvement in the 6-minute walk tests (6MWTs) by an average of 51 m (from 332 m at baseline to 359 m at 1 month and 383 m at 6 months). Patients demonstrated improvement in self-reported anxiety (P=0.018). The improvement in image-based VQ was positively associated with the 6MWT and the anxiety domain of the Severe Respiratory Insufficiency Questionnaire. Conclusion: Though previous studies of long-term NIV have shown conflicting results, this study demonstrates that patients can benefit from long-term NIV treatment, resulting in improved VQ, gas exchange, and exercise tolerance

    Pulmonary vascular effects of pulsed inhaled nitric oxide in COPD patients with pulmonary hypertension

    Get PDF
    INTRODUCTION: Severe chronic obstructive pulmonary disease (COPD) is often associated with secondary pulmonary hypertension (PH), which worsens prognosis. PH can be lowered by oxygen, but also by inhaled nitric oxide (NO), which has the potential to improve the health status of these patients. NO is an important mediator in vascular reactions in the pulmonary circulation. Oral compounds can act through NO-mediated pathways, but delivering pulsed inhaled NO (iNO) directly to the airways and pulmonary vasculature could equally benefit patients. Therefore, a proof-of-concept study was performed to quantify pulmonary blood vessel caliber changes after iNO administration using computed tomography (CT)-based functional respiratory imaging (FRI). METHODS: Six patients with secondary PH due to COPD received “pulsed” iNO in combination with oxygen for 20 minutes via a nasal cannula. Patients underwent a high-resolution CT scan with contrast before and after iNO. Using FRI, changes in volumes of blood vessels and associated lobes were quantified. Oxygen saturation and blood pressure were monitored and patients were asked about their subjective feelings. RESULTS: Pulmonary blood vessel volume increased by 7.06%±5.37% after iNO. A strong correlation (Ω(2)(0)=0.32, P=0.002) was obtained between ventilation and observed vasodilation, suggesting that using the pulsed system, iNO is directed toward the ventilated zones, which consequently experience more vasodilation. Patients did not develop oxygen desaturation, remained normotensive, and perceived an improvement in their dyspnea sensation. CONCLUSION: Inhalation of pulsed NO with oxygen causes vasodilation in the pulmonary circulation of COPD patients, mainly in the well-ventilated areas. A high degree of heterogeneity was found in the level of vasodilation. Patients tend to feel better after the treatment. Chronic use trials are warranted

    Functional respiratory imaging to assess the interaction between systemic roflumilast and inhaled ICS/LABA/LAMA

    Get PDF
    BACKGROUND: Patients with COPD show a significant reduction of the lobar hyperinflation at the functional residual capacity level in the patients who improved >120 mL in forced expiratory volume in 1 second (FEV(1)) after 6 months of treatment with roflumilast in addition to inhaled corticosteroids (ICSs)/long-acting beta-2 agonists (LABAs)/long-acting muscarinic antagonists (LAMAs). METHODS: Functional respiratory imaging was used to quantify lobar hyperinflation, blood vessel density, ventilation, aerosol deposition, and bronchodilation. To investigate the exact mode of action of roflumilast, correlations between lobar and global measures have been tested using a mixed-model approach with nested random factors and Pearson correlation, respectively. RESULTS: The reduction in lobar hyperinflation appears to be associated with a larger blood vessel density in the respective lobes (t=−2.154, P=0.040); lobes with a higher percentage of blood vessels reduce more in hyperinflation in the responder group. Subsequently, it can be observed that lobes that reduce in hyperinflation after treatment are better ventilated (t=−5.368, P<0.001). Functional respiratory imaging (FRI)-based aerosol deposition showed that enhanced ventilation leads to more peripheral particle deposition of ICS/LABA/LAMA in the better-ventilated areas (t=2.407, P=0.024). Finally, the study showed that areas receiving more particles have increased FRI-based bronchodilation (t=2.564, P=0.017), leading to an increase in FEV(1) (R=0.348, P=0.029). CONCLUSION: The study demonstrated that orally administered roflumilast supports the reduction of regional hyperinflation in areas previously undertreated by inhalation medication. The local reduction in hyperinflation induces a redistribution of ventilation and aerosol deposition, leading to enhanced efficacy of the concomitant ICS/LABA/LAMA therapy. FRI appears to be a sensitive tool to describe the mode of action of novel compounds in chronic obstructive pulmonary disease. Future studies need to confirm the enhanced sensitivity and the potential of FRI parameters to act as surrogates for clinically relevant, but more difficult to measure, end points such as exacerbations
    corecore