11,536 research outputs found

    Semiclassical Inequivalence of Polygonalized Billiards

    Full text link
    Polygonalization of any smooth billiard boundary can be carried out in several ways. We show here that the semiclassical description depends on the polygonalization process and the results can be inequivalent. We also establish that generalized tangent-polygons are closest to the corresponding smooth billiard and for de Broglie wavelengths larger than the average length of the edges, the two are semiclassically equivalent.Comment: revtex, 4 ps figure

    The Complex Time WKB Approximation And Particle Production

    Get PDF
    The complex time WKB (CWKB) approximation has been an effective technique to understand particle production in curved as well as in flat spacetime. Earlier we obtained the standard results on particle production in time dependent gauge in various curved spacetime. In the present work we generalize the technique of CWKB to the equivalent problems in space dependent gauge. Using CWKB, we first obtain the gauge invariant result for particle production in Minkowski spacetime in strong electric field. We then carry out particle production in de-Sitter spacetime in space dependent gauge and obtain the same result that we obtained earlier in time dependent gauge. The results obtained for de-Sitter spacetime has a obvious extension to particle production in black hole spacetime. It is found that the origin of Planckian spectrum is due to repeated reflections between the turning points. As mentioned earlier, it is now explicitly shown that particle production is accompanied by rotation of currents.Comment: 12 pages, Revte

    Comparative study of the centrosymmetric and non-centrosymmetric superconducting phases of Re3W using muon-spin spectroscopy and heat capacity measurements

    Full text link
    We compare the low-temperature electronic properties of the centrosymmetric (CS) and non-centrosymmetric (NCS) phases of Re3W using muon-spin spectroscopy and heat capacity measurements. The zero-field muSR results indicate that time-reversal symmetry is preserved for both structures of Re3W. Transverse-field muon spin rotation has been used to study the temperature dependence of the penetration depth lambda(T) in the mixed state. For both phases of Re3W, lambda(T) can be explained using a single-gap s-wave BCS model. The magnetic penetration depth at zero temperature, lambda(0), is 164(7) and 418(6) nm for the centrosymmetric and the non-centrosymmetric phases of Re3W respectively. Low-temperature specific heat data also provide evidence for an s-wave gap-symmetry for the two phases of Re3W. Both the muSR and heat capacity data show that the CS material has a higher Tc and a larger superconducting gap Delta(0) at 0 K than the NCS compound. The ratio Delta(0)/kBTc indicates that both phases of Re3W should be considered as strong-coupling superconductors.Comment: 7 pages, to appear in Physical Review

    Power loss in open cavity diodes and a modified Child Langmuir Law

    Full text link
    Diodes used in most high power devices are inherently open. It is shown that under such circumstances, there is a loss of electromagnetic radiation leading to a lower critical current as compared to closed diodes. The power loss can be incorporated in the standard Child-Langmuir framework by introducing an effective potential. The modified Child-Langmuir law can be used to predict the maximum power loss for a given plate separation and potential difference as well as the maximum transmitted current for this power loss. The effectiveness of the theory is tested numerically.Comment: revtex4, 11 figure

    A Circuit for a Self-Strobed Reading Method in Magnetic Drum Digital Stores

    Get PDF
    corecore