17 research outputs found

    Microstructure and texture evolution of Pure magnesium during ecae

    Get PDF
    Initially hot rolled commercially pure magnesium and having a basal texture was deformed by Equal Channel Angular Extrusion (ECAE). ECAE was carried out up to 4 passes in a 90° die following three different routes (A, Bc and C) at a temperatures of 523 K. Systematic analysis of microstructures, grain size distributions, texture and grain boundary character distributions was carried out using electron back scattered diffraction in field emission gun scanning electron microscope in the transverse plane. In addition to significant reduction in grain size, strong fiber texture inclined at an angle ~ 45o from the extrusion axis formed in the material. Texture was also analyzed by orientation distribution function (ODF) and compared vis-à-vis shear texture. A significant amount of dynamic recrystallization occurred during ECAE, which apparently did not influence the deformation texture

    Ultra-fine Grain Materials by Severe Plastic Deformation: Application to Steels

    No full text
    Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date

    Asymmetric and symmetric rolling of magnesium: Evolution of microstructure, texture and mechanical properties

    No full text
    In the present study, asymmetric rolling was carried out for incorporating a shear component during the rolling at different temperatures, and was compared with conventional (symmetric) rolling. The microstructures were investigated using electron back-scatter diffraction (EBSD). The strain incorporated was compared with the help of grain orientation spread (GOS). GOS was eventually used as a criterion to partition the microstructure for separating the deformed and the dynamically recrystallized (DRX) grains. The texture of the partitioned DRX grains was shifted by similar to 30 degrees along the c-axis from the deformed grains. The mechanism of dynamic recrystallization (DRX) has been identified as continuous dynamic recovery and recrystallization (CDRR). The partitioned deformed grains for the higher temperature rolled specimens exhibited a texture similar to the room temperature rolled specimen. The asymmetric rolling introduces a shear component which shifts the texture fibre by similar to 5-10 degrees from the conventional rolling texture. This led to an increase in ductility with little compromise on strength. (c) 2012 Elsevier B.V. All rights reserved

    Room-temperature equal channel angular extrusion of pure magnesium

    No full text
    In this paper, we demonstrate a way to impart severe plastic deformation to magnesium at room temperature to produce ultrafine grain size of similar to 250 nm through equal channel angular extrusion (ECAE). The strategy to deform magnesium at lower temperature or to achieve such grain sizes has been proposed as: (i) to obtain a suitable initial orientation with high Schmid factor for basal slip and low Schmid factor for pyramidal/prismatic slip; (ii) to take advantage of low stacking fault energy of basal and high stacking fault energies of prismatic/pyramidal planes in order to relatively work-harden the basal plane with respect to the pyramidal/prismatic plane; and (iii) to lower the temperature of deformation in steps, leading to continual refinement of grains, resulting in finer grain size. The experimental as well as simulated texture of ECAE-processed samples indicate that the deformation mechanism leading to ultrafine grain size is slip-dominated. The recrystallization mechanism during ECAE has been found to be orientation-dependent. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Analysis of texture evolution in pure magnesium and the magnesium alloy AM30 during rod and tube extrusion

    No full text
    The evolution of microstructure and texture during extrusion of pure magnesium and its single phase alloy AM30 has been studied experimentally as well as by crystal plasticity simulation. Microstructure and micro-texture were characterized by electron back scattered diffraction (EBSD), bulk-texture was measured using X-ray diffraction and deformation texture simulations were carried out using visco-plastic self consistent (VPSC) model. In spite of clear indications of the occurrence of dynamic recrystallization (DRX), simulations were able to reproduce the experimental textures successfully. This was attributed to the fact that the textures were c-type fibers with their axis of rotation parallel to the c-axis and DRX leads to simply rotate the texture around the c-axis

    Grain Growth in ECAE Processed Pure Magnesium

    No full text
    Grain growth kinetics was studied for commercially pure magnesium subjected to equal channel angular extrusion (ECAE). The specimens were ECAE processed upto 4 passes at 523 K following all the three important routes, namely A, 13, and C. Texture and microstructures of the samples were studied using Electron Back Scattered Diffraction (EBSD) technique in a Field Emission Gun Scanning Electron Microscope (FEG-SEM). It was observed that the grain size significantly reduces after ECAE. ECAE process produces a slightly rotated B and C-2 fiber. Static annealing leads to normal grain growth with unimodal distribution of grains through out the temperature range. Average activation energy for grain growth in the temperature range studied is found to be less than the activation energy for lattice diffusion and grain boundary diffusion of magnesium. No significant change in texture during isochronal annealing for 1 hour i.e., the predominant deformation texture remains same

    Texture and grain boundary character distribution during equal channel angular extrusion of some two-phase copper alloys

    No full text
    In the present work, a thorough investigation of evolution of microstructure and texture has been carried out to elucidate the evolution of texture and grain boundary character distribution (GBCD) during Equal Channel Angular Extrusion (ECAE) of some model two-phase materials, namely Cu-0.3 Cr and Cu-40 Zn. Texture of Cu-0.3 Cr alloy is similar to that reported for pure copper. On the other hand, in Cu-40 Zn alloy, texture evolution in α and β (B2) phases are interdependent. In Cu-0.3Cr alloy, there is a considerable decreases in volume fraction of low angle boundaries (LAGBs), only a slight increase in CSL boundaries, but increase in high angle grain boundaries (HAGBs) from 1 pass to 4 passes for both the routes. In the case of Cu-40 Zn alloy, there is an appreciable increase in CSL volume fraction

    Role of deformation temperature on the evolution and heterogeneity of texture during equal channel angular pressing of magnesium

    No full text
    Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 degrees C, 150 degrees C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C-2) <c + a> II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted similar to 55 degrees due to negative shear attributed to friction. (C) 2015 Elsevier Inc. All rights reserved

    Load history effect on FCGR behaviour of 304LN stainless steel

    No full text
    FCGR behaviour of 304LN stainless steel was studied employing (i) constant R and (ii) constant Kmax cyclic loading envelopes. The closure free crack growth rates obtained by the constant Kmax method were always lower than that of the constant R procedure. Martensitic transformation at the crack tip was observed in both the cases. Qualitatively, the constant Kmax method produced more martensite than the constant R procedure. The martensitic transformation is thought to decrease the applied stress amplitude due to volumetric expansion and strain associated with phase transformation. The dissimilarity in the martensitic transformation and the resultant reduction in the applied stress cycle produced by the two methods were thought to be the reasons for the observed difference in the crack growth rates

    Thermal Response on the Microstructure and Texture of ECAP and Cold-Rolled Pure Magnesium

    No full text
    International audienceThis paper deals with dynamic recrystallization (DRX), static recrystallization, and grain growth phenomena of pure magnesium after equal channel angular pressing (ECAP) by route A and BC at 523 K (250 °C) followed by 80 pct cold rolling. The ECAP-deformed and the subsequently rolled samples were annealed at 373 K and 773 K (100 °C and 500 °C). The associated changes in the microstructure and texture were studied using electron back-scattered diffraction. ECAP produced an average grain size of ~12 to 18 µm with B and C2 fiber textures. Subsequent rolling led to an average grain size ~8 to 10 µm with basal texture fiber parallel to ND. There was no noticeable increase in the average grain size on annealing at 373 K (100 °C). However, significant increase in the average grain size occurred at 773 K (500 °C). The occurrence of different DRX mechanisms was detected: discontinuous dynamic recrystallization was attributed to basal slip activity and continuous dynamic recovery and recrystallization to prismatic/pyramidal slip systems. Only continuous static recrystallization could be observed on annealing
    corecore