108 research outputs found

    Symmetry-dependent phonon renormalization in monolayer MoS2 transistor

    Full text link
    Strong electron-phonon interaction which limits electronic mobility of semiconductors can also have significant effects on phonon frequencies. The latter is the key to the use of Raman spectroscopy for nondestructive characterization of doping in graphene-based devices. Using in-situ Raman scattering from single layer MoS2_2 electrochemically top-gated field effect transistor (FET), we show softening and broadening of A1g_{1g} phonon with electron doping whereas the other Raman active E2g1_{2g}^{1} mode remains essentially inert. Confirming these results with first-principles density functional theory based calculations, we use group theoretical arguments to explain why A1g_{1g} mode specifically exhibits a strong sensitivity to electron doping. Our work opens up the use of Raman spectroscopy in probing the level of doping in single layer MoS2_2-based FETs, which have a high on-off ratio and are of enormous technological significance.Comment: 5 pages, 3 figure

    Raman anomalies as signatures of pressure induced electronic topological and structural transitions in black phosphorus: Experiments and Theory

    Full text link
    We report high pressure Raman experiments of Black phosphorus up to 24 GPa. The line widths of first order Raman modes Ag1^1_g, B2g_{2g} and Ag2^2_g of the orthorhombic phase show a minimum at 1.1 GPa. Our first-principles density functional analysis reveals that this is associated with the anomalies in electron-phonon coupling at the semiconductor to topological insulator transition through inversion of valence and conduction bands marking a change from trivial to nontrivial electronic topology. The frequencies of B2g_{2g} and Ag2^2_g modes become anomalous in the rhombohedral phase at 7.4 GPa, and new modes appearing in the rhombohedral phase show anomalous softening with pressure. This is shown to originate from unusual structural evolution of black phosphorous with pressure, based on first-principles theoretical analysis.Comment: 13pages, 12figure

    Electron-Hole Asymmetry in the Electron-phonon Coupling in Top-gated Phosphorene Transistor

    Full text link
    Using in-situ Raman scattering from phosphorene channel in an electrochemically top-gated field effect transistor, we show that its phonons with Ag_g symmetry depend much more strongly on concentration of electrons than that of holes, while the phonons with Bg_g symmetry are insensitive to doping. With first-principles theoretical analysis, we show that the observed electon-hole asymmetry arises from the radically different constitution of its conduction and valence bands involving π\pi and σ\sigma bonding states respectively, whose symmetry permits coupling with only the phonons that preserve the lattice symmetry. Thus, Raman spectroscopy is a non-invasive tool for measuring electron concentration in phosphorene-based nanoelectronic devices

    Baryon inhomogeneity generation via cosmic strings at QCD scale and its effects on nucleosynthesis

    Full text link
    We have earlier shown that cosmic strings moving through the plasma at the time of a first order quark-hadron transition in the early universe can generate large scale baryon inhomogeneities. In this paper, we calculate detailed structure of these inhomogeneities at the quark-hadron transition. Our calculations show that the inhomogeneities generated by cosmic string wakes can strongly affect nucleosynthesis calculations. A comparison with observational data suggests that such baryon inhomogeneities should not have existed at the nucleosynthesis epoch. If this disagreement holds with more accurate observations, then it will lead to the conclusions that cosmic string formation scales above 1014101510^{14} - 10^{15} GeV may not be consistent with nucleosynthesis and CMBR observations. Alternatively, some other input in our calculation should be constrained, for example, if the average string velocity remains sufficiently small so that significant density perturbations are never produced at the QCD scale, or if strings move ultra-relativistically so that string wakes are very thin, trapping negligible amount of baryons. Finally, if quark-hadron transition is not of first order then our calculations do not apply.Comment: 24 pages, 5 figures, minor changes, version to appear in Phys. Rev.

    Cosmic string induced sheet like baryon inhomogeneities at quark-hadron transition

    Get PDF
    Cosmic strings moving through matter produce wakes where density is higher than the background density. We investigate the effects of such wakes occurring at the time of a first order quark-hadron transition in the early universe and show that they can lead to separation of quark-gluon plasma phase in the wake region, while the region outside the wake converts to the hadronic phase. Moving interfaces then trap large baryon densities in sheet like regions which can extend across the entire horizon. Typical separation between such sheets, at formation, is of the order of a km. Regions of baryon inhomogeneity of this nature, i.e. having a planar geometry, and separated by such large distance scales, appear to be well suited for the recent models of inhomogeneous nucleosynthesis to reconcile with the large baryon to photon ratio implied by the recent measurements of the cosmic microwave background power spectrum.Comment: 8 pages, 3 figure

    Orthopaedic applications of bone graft & graft substitutes: a review

    Get PDF
    Treatment of delayed union, malunion, and nonunion is a challenge to the orthopaedic surgeons in veterinary and human fields. Apart from restoration of alignment and stable fixation, in many cases adjunctive measures such as bone-grafting or use of bone-graft substitutes are of paramount importance. Bone-graft materials usually have one or more components: an osteoconductive matrix, which acts as scaffold to new bone growth; osteoinductive proteins, which support mitogenesis of undifferentiated cells; and osteogenic cells, which are capable of forming bone in the appropriate environment. Autologous bone remains the ``gold standard'' for stimulating bone repair and regeneration, but its availability may be limited and the procedure to harvest the material is associated with complications. Bone-graft substitutes can either substitute autologous bone graft or expand an existing amount of autologous bone graft. We review the currently available bone graft and graft substitutes for the novel therapeutic approaches in clinical setting of orthopaedic surgery

    Healing Potential of Picrorhiza kurroa (Scrofulariaceae) rhizomes against indomethacin-induced gastric ulceration: a mechanistic exploration.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study was undertaken to evaluate the potential of the rhizomes of the Indian medicinal plant, <it>Picrorhiza kurroa </it>in healing indomethacin-induced acute stomach ulceration in mice and examine its capacity to modulate oxidative stress and the levels of prostaglandin (PGE<sub>2</sub>) and EGF during the process.</p> <p>Methods</p> <p>Male swiss albino mice, ulcerated with indomethacin (18 mg/kg, p. o., single dose) were treated up to 7 days with different doses of the methanol extract of <it>P. kurroa </it>rhizomes (designated as PK). The healing capacity of the most effective dose of PK (20 mg/kg, p. o. × 3 d) was compared with that of omeprazole (Omez) (3 mg/kg, p. o. × 3 d). The effects of the drug-treatment for one and three days on the biochemical parameters were assessed by comparing the results with that of untreated mice of the 1<sup>st </sup>and 3<sup>rd </sup>day of ulceration. The stomach tissues of the mice were used for the biochemical analysis.</p> <p>Results</p> <p>The macroscopic indices revealed maximum ulceration on the 3<sup>rd </sup>day after indomethacin administration, which was effectively healed by PK. Under the optimized treatment regime, PK and Omez reduced the ulcer indices by 45.1% (<it>P </it>< 0.01), and 76.3% respectively (<it>P </it>< 0.001), compared to the untreated ulcerated mice.</p> <p>Compared to the ulcerated untreated mice, those treated with PK for 3 days showed decreased the levels of thiobarbituric acid reactive substances (TBARS) (32.7%, <it>P </it>< 0.05) and protein carbonyl (37.7%, <it>P </it>< 0.001), and increased mucin (42.2%, <it>P </it>< 0.01), mucosal PGE<sub>2 </sub>(21.4%, <it>P </it>< 0.05), and expressions of COX-1 and 2 (26.9% and 18.5%, <it>P </it>< 0.05), EGF (149.0%, <it>P </it>< 0.001) and VEGF (56.9%, <it>P </it>< 0.01). Omez reduced the TBARS (29.4%, <it>P </it>< 0.05), and protein carbonyl (38.9%, <it>P </it>< 0.001), and increased mucin (38.3%, <it>P </it>< 0.01), without altering the other parameters significantly.</p> <p>Conclusion</p> <p>PK (20 mg/kg, p. o. × 3 days) could effectively heal indomethacin-induced stomach ulceration in mice by reducing oxidative stress, and promoting mucin secretion, prostaglandin synthesis and augmenting expressions of cyclooxygenase enzymes and growth factors.</p

    Institutions for Asian Connectivity

    Full text link
    To make Asia more economically sustainable and resilient against external shocks, regional economies need to be rebalanced toward regional demand- and trade-driven growth through increased regional connectivity. The effectiveness of connectivity depends on the quality of hard and soft infrastructure. Of particular importance in terms of soft infrastructure which makes hard infrastructure work are the facilitating institutions that support connectivity through appropriate policies, reforms, systems, and procedures and through promoting effective coordination and cooperation. Asia has many overlapping subregional institutions involved in national and regional energy, transport, and telecommunications infrastructure connectivity. However, these institutions are characterized as being less effective, informal, and lacking a clear and binding system of rules and policies. This paper draws linkages between connectivity, growth and development, governance, and institutions. It details the benefits the region could achieve by addressing needed connectivity enhancements and the connectivity and financing challenges it faces. In addition, it presents various institutional options for regional infrastructure financing. To build seamless Asian connectivity, Asia needs an effective, formal, and rules-based institutional framework. The paper presents a new institutional framework together with the organizational structures of two new regional institutional mechanisms, namely the Pan-Asian Infrastructure Forum and the Asian Infrastructure Fund
    corecore