190 research outputs found

    A Mild, Palladium-Catalyzed Method for the Dehydrohalogenation of Alkyl Bromides: Synthetic and Mechanistic Studies

    Get PDF
    We have exploited a typically undesired elementary step in cross-coupling reactions, β-hydride elimination, to accomplish palladium-catalyzed dehydrohalogenations of alkyl bromides to form terminal olefins. We have applied this method, which proceeds in excellent yield at room temperature in the presence of a variety of functional groups, to a formal total synthesis of (R)-mevalonolactone. Our mechanistic studies have established that the rate-determining step can vary with the structure of the alkyl bromide and, most significantly, that L_2PdHBr (L = phosphine), an intermediate that is often invoked in palladium-catalyzed processes such as the Heck reaction, is not an intermediate in the active catalytic cycle

    Photoinduced, Copper-Catalyzed Alkylation of Amides with Unactivated Secondary Alkyl Halides at Room Temperature

    Get PDF
    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for S_N2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C–N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper–amidate complex, followed by electron transfer to form an alkyl radical

    Transition-Metal-Catalyzed Alkylations of Amines with Alkyl Halides: Photoinduced, Copper-Catalyzed Couplings of Carbazoles

    Get PDF
    N-alkylations of carbazoles with a variety of secondary and hindered primary alkyl iodides can be achieved by using a simple precatalyst (CuI) under mild conditions (0 °C) in the presence of a Brønsted base; at higher temperature (30 °C), secondary alkyl bromides also serve as suitable coupling partners. A Li[Cu(carbazolide)_2] complex has been crystallographically characterized, and it may serve as an intermediate in the catalytic cycle

    A Versatile Approach to Ullmann C−N Couplings at Room Temperature: New Families of Nucleophiles and Electrophiles for Photoinduced, Copper-Catalyzed Processes

    Get PDF
    The use of light to facilitate copper-catalyzed cross-couplings of nitrogen nucleophiles can enable C−N bond formation to occur under unusually mild conditions. In this study, we substantially expand the scope of such processes, establishing that this approach is not limited to reactions of carbazoles with iodobenzene and alkyl halides. Specifically, we demonstrate for the first time that other nitrogen nucleophiles (e.g., common pharmacophores such as indoles, benzimidazoles, and imidazoles) as well as other electrophiles (e.g., hindered/deactivated/heterocyclic aryl iodides, an aryl bromide, an activated aryl chloride, alkenyl halides, and an alkynyl bromide) serve as suitable partners. Photoinduced C−N bond formation can be achieved at room temperature using a common procedure with an inexpensive catalyst (CuI) that does not require a ligand coadditive and is tolerant of moisture and a variety of functional groups
    • …
    corecore