2 research outputs found

    Rainfall, not soil temperature, will limit the seed germination of dry forest species with climate change

    No full text
    Drylands are predicted to become more arid and saline due to increasing global temperature and drought. Although species from the Caatinga, a Brazilian tropical dry forest, are tolerant to these conditions, the capacity for germination to withstand extreme soil temperature and water deficit associated with climate change remains to be quantified. We aimed to evaluate how germination will be affected under future climate change scenarios of limited water and increased temperature. Seeds of three species were germinated at different temperatures and osmotic potentials. Thermal time and hydrotime model parameters were established and thresholds for germination calculated. Germination performance in 2055 was predicted, by combining temperature and osmotic/salt stress thresholds, considering soil temperature and moisture following rainfall events. The most pessimistic climate scenario predicts an increase of 3.9 °C in soil temperature and 30% decrease in rainfall. Under this scenario, soil temperature is never lower than the minimum and seldomly higher than maximum temperature thresholds for germination. As long as the soil moisture (0.139 cm3 cm3) requirements are met, germination can be achieved in 1 day. According to the base water potential and soil characteristics, the minimum weekly rainfall for germination is estimated to be 17.5 mm. Currently, the required minimum rainfall occurs in 14 weeks of the year but will be reduced to 4 weeks by 2055. This may not be sufficient for seedling recruitment of some species in the natural environment. Thus, in future climate scenarios, rainfall rather than temperature will be extremely limiting for seed germination

    The negative effect of a vertically-transmitted fungal endophyte on seed longevity is stronger than that of ozone transgenerational effect

    No full text
    Seed morphology underpins many critical biological and ecological processes, such as seed dormancy and germination, dispersal, and persistence. It is also a valuable taxonomic trait that can provide information about plant evolution and adaptations to different ecological niches. This study characterised and compared various seed morphological traits, i.e., seed and pod shape, seed colour and size, embryo size, and air volume for six orchid species; and explored whether taxonomy, biogeographical origin, or growth habit are important determinants of seed morphology. We investigated this on two tropical epiphytic orchid species from Indonesia (Dendrobium strebloceras and D. lineale), and four temperate species from New Zealand, terrestrial Gastrodia cunnninghamii, Pterostylis banksii and Thelymitra nervosa, and epiphytic D. cunninghamii. Our results show some similarities among related species in their pod shape and colour, and seed colouration. All the species studied have scobiform or fusiform seeds and prolate-spheroid embryos. Specifically, D. strebloceras, G. cunninghamii, and P. banksii have an elongated seed shape, while T. nervosa has truncated seeds. Interestingly, we observed high variability in the micro-morphological seed characteristics of these orchid species, unrelated to their taxonomy, biogeographical origin, or growth habit, suggesting different ecological adaptations possibly reflecting their modes of dispersal
    corecore