147 research outputs found

    The Dirac Quantum Cellular Automaton in one dimension: Zitterbewegung and scattering from potential

    Full text link
    We study the dynamical behaviour of the quantum cellular automaton of Refs. [1, 2], which reproduces the Dirac dynamics in the limit of small wavevectors and masses. We present analytical evaluations along with computer simulations, showing how the automaton exhibits typical Dirac dynamical features, as the Zitterbewegung and the scattering behaviour from potential that gives rise to the so-called Klein paradox. The motivation is to show concretely how pure processing of quantum information can lead to particle mechanics as an emergent feature, an issue that has been the focus of solid-state, optical and atomic-physics quantum simulator.Comment: 8 pages, 7 figure

    Quantum Field as a quantum cellular automaton: the Dirac free evolution in one dimension

    Full text link
    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound with experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be effi- ciently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of an hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics.Comment: 21 pages, 4 figure

    Data-Driven Inference, Reconstruction, and Observational Completeness of Quantum Devices

    Full text link
    The range of a quantum measurement is the set of output probability distributions that can be produced by varying the input state. We introduce data-driven inference as a protocol that, given a set of experimental data as a collection of output distributions, infers the quantum measurement which is, i) consistent with the data, in the sense that its range contains all the distributions observed, and, ii) maximally noncommittal, in the sense that its range is of minimum volume in the space of output distributions. We show that data-driven inference is able to return a measurement up to symmetries of the state space (as it is solely based on observed distributions) and that such limit accuracy is achieved for any data set if and only if the inference adopts a (hyper)-spherical state space (for example, the classical or the quantum bit). When using data-driven inference as a protocol to reconstruct an unknown quantum measurement, we show that a crucial property to consider is that of observational completeness, which is defined, in analogy to the property of informational completeness in quantum tomography, as the property of any set of states that, when fed into any given measurement, produces a set of output distributions allowing for the correct reconstruction of the measurement via data-driven inference. We show that observational completeness is strictly stronger than informational completeness, in the sense that not all informationally complete sets are also observationally complete. Moreover, we show that for systems with a (hyper)-spherical state space, the only observationally complete simplex is the regular one, namely, the symmetric informationally complete set.Comment: 15 pages, 12 figures, minor update

    Quantum conditional operations

    Full text link
    An essential element of classical computation is the "if-then" construct, that accepts a control bit and an arbitrary gate, and provides conditional execution of the gate depending on the value of the controlling bit. On the other hand, quantum theory prevents the existence of an analogous universal construct accepting a control qubit and an arbitrary quantum gate as its input. Nevertheless, there are controllable sets of quantum gates for which such a construct exists. Here we provide a necessary and sufficient condition for a set of unitary transformations to be controllable, and we give a complete characterization of controllable sets in the two dimensional case. This result reveals an interesting connection between the problem of controllability and the problem of extracting information from an unknown quantum gate while using it.Comment: 7 page

    Quantum Walks, Weyl equation and the Lorentz group

    Full text link
    Quantum cellular automata and quantum walks provide a framework for the foundations of quantum field theory, since the equations of motion of free relativistic quantum fields can be derived as the small wave-vector limit of quantum automata and walks starting from very general principles. The intrinsic discreteness of this framework is reconciled with the continuous Lorentz symmetry by reformulating the notion of inertial reference frame in terms of the constants of motion of the quantum walk dynamics. In particular, among the symmetries of the quantum walk which recovers the Weyl equation--the so called Weyl walk--one finds a non linear realisation of the Poincar\'e group, which recovers the usual linear representation in the small wave-vector limit. In this paper we characterise the full symmetry group of the Weyl walk which is shown to be a non linear realization of a group which is the semidirect product of the Poincar\'e group and the group of dilations.Comment: 9 pages, 2 figure

    Solutions of a two-particle interacting quantum walk

    Full text link
    We study the solutions of the interacting Fermionic cellular automaton introduced in Ref. [Phys Rev A 97, 032132 (2018)]. The automaton is the analogue of the Thirring model with both space and time discrete. We present a derivation of the two-particles solutions of the automaton, which exploits the symmetries of the evolution operator. In the two-particles sector, the evolution operator is given by the sequence of two steps, the first one corresponding to a unitary interaction activated by two-particle excitation at the same site, and the second one to two independent one-dimensional Dirac quantum walks. The interaction step can be regarded as the discrete-time version of the interacting term of some Hamiltonian integrable system, such as the Hubbard or the Thirring model. The present automaton exhibits scattering solutions with nontrivial momentum transfer, jumping between different regions of the Brillouin zone that can be interpreted as Fermion-doubled particles, in stark contrast with the customary momentum-exchange of the one dimensional Hamiltonian systems. A further difference compared to the Hamiltonian model is that there exist bound states for every value of the total momentum, and even for vanishing coupling constant. As a complement to the analytical derivations we show numerical simulations of the interacting evolution.Comment: 16 pages, 6 figure

    Memory cost of quantum protocols

    Full text link
    In this paper we consider the problem of minimizing the ancillary systems required to realize an arbitrary strategy of a quantum protocol, with the assistance of classical memory. For this purpose we introduce the notion of memory cost of a strategy, which measures the resources required in terms of ancillary dimension. We provide a condition for the cost to be equal to a given value, and we use this result to evaluate the cost in some special cases. As an example we show that any covariant protocol for the cloning of a unitary transformation requires at most one ancillary qubit. We also prove that the memory cost has to be determined globally, and cannot be calculated by optimizing the resources independently at each step of the strategy.Comment: 9 page
    • …
    corecore