12,025 research outputs found

    Highly frustrated spin-lattice models of magnetism and their quantum phase transitions: A microscopic treatment via the coupled cluster method

    Full text link
    We outline how the coupled cluster method of microscopic quantum many-body theory can be utilized in practice to give highly accurate results for the ground-state properties of a wide variety of highly frustrated and strongly correlated spin-lattice models of interest in quantum magnetism, including their quantum phase transitions. The method itself is described, and it is shown how it may be implemented in practice to high orders in a systematically improvable hierarchy of (so-called LSUBmm) approximations, by the use of computer-algebraic techniques. The method works from the outset in the thermodynamic limit of an infinite lattice at all levels of approximation, and it is shown both how the "raw" LSUBmm results are themselves generally excellent in the sense that they converge rapidly, and how they may accurately be extrapolated to the exact limit, m→∞m \rightarrow \infty, of the truncation index mm, which denotes the {\it only} approximation made. All of this is illustrated via a specific application to a two-dimensional, frustrated, spin-half J1XXZJ^{XXZ}_{1}--J2XXZJ^{XXZ}_{2} model on a honeycomb lattice with nearest-neighbor and next-nearest-neighbor interactions with exchange couplings J1>0J_{1}>0 and J2≡κJ1>0J_{2} \equiv \kappa J_{1} > 0, respectively, where both interactions are of the same anisotropic XXZXXZ type. We show how the method can be used to determine the entire zero-temperature ground-state phase diagram of the model in the range 0≤κ≤10 \leq \kappa \leq 1 of the frustration parameter and 0≤Δ≤10 \leq \Delta \leq 1 of the spin-space anisotropy parameter. In particular, we identify a candidate quantum spin-liquid region in the phase space

    A frustrated spin-1/2 Heisenberg antiferromagnet on a chevron-square lattice

    Full text link
    The coupled cluster method (CCM) is used to study the zero-temperature properties of a frustrated spin-half (s=12s={1}{2}) J1J_{1}--J2J_{2} Heisenberg antiferromagnet (HAF) on a 2D chevron-square lattice. Each site on an underlying square lattice has 4 nearest-neighbor exchange bonds of strength J1>0J_{1}>0 and 2 next-nearest-neighbor (diagonal) bonds of strength J2≡xJ1>0J_{2} \equiv x J_{1}>0, with each square plaquette having only one diagonal bond. The diagonal bonds form a chevron pattern, and the model thus interpolates smoothly between 2D HAFs on the square (x=0x=0) and triangular (x=1x=1) lattices, and also extrapolates to disconnected 1D HAF chains (x→∞x \to \infty). The classical (s→∞s \to \infty) version of the model has N\'{e}el order for 0<x<xcl0 < x < x_{{\rm cl}} and a form of spiral order for xcl<x<∞x_{{\rm cl}} < x < \infty, where xcl=12x_{{\rm cl}} = {1}{2}. For the s=12s={1}{2} model we use both these classical states, as well as other collinear states not realized as classical ground-state (GS) phases, as CCM reference states, on top of which the multispin-flip configurations resulting from quantum fluctuations are incorporated in a systematic truncation scheme, which we carry out to high orders and extrapolate to the physical limit. We calculate the GS energy, GS magnetic order parameter, and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order, including plaquette and two different dimer forms. We find that the s=12s={1}{2} model has two quantum critical points, at xc1≈0.72(1)x_{c_{1}} \approx 0.72(1) and xc2≈1.5(1)x_{c_{2}} \approx 1.5(1), with N\'{e}el order for 0<x<xc10 < x < x_{c_{1}}, a form of spiral order for xc1<x<xc2x_{c_{1}} < x < x_{c_{2}} that includes the correct three-sublattice 120∘120^{\circ} spin ordering for the triangular-lattice HAF at x=1x=1, and parallel-dimer VBC order for xc2<x<∞x_{c_{2}} < x < \infty

    Spin-1/2 J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice

    Full text link
    Using the coupled cluster method (CCM) we study the full (zero-temperature) ground-state (GS) phase diagram of a spin-half (s=1/2s=1/2) J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice. Each site of the square lattice has 4 nearest-neighbour exchange bonds of strength J1J_{1} and 2 next-nearest-neighbour (diagonal) bonds of strength J2J_{2}. The J2J_{2} bonds are arranged so that the basic square plaquettes in alternating columns have either both or no J2J_{2} bonds included. The classical (s→∞s \rightarrow \infty) version of the model has 4 collinear phases when J1J_{1} and J2J_{2} can take either sign. Three phases are antiferromagnetic (AFM), showing so-called N\'{e}el, double N\'{e}el and double columnar striped order respectively, while the fourth is ferromagnetic. For the quantum s=1/2s=1/2 model we use the 3 classical AFM phases as CCM reference states, on top of which the multispin-flip configurations arising from quantum fluctuations are incorporated in a systematic truncation hierarchy. Calculations of the corresponding GS energy, magnetic order parameter and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order are thus carried out numerically to high orders of approximation and then extrapolated to the (exact) physical limit. We find that the s=1/2s=1/2 model has 5 phases, which correspond to the four classical phases plus a new quantum phase with plaquette VBC order. The positions of the 5 quantum critical points are determined with high accuracy. While all 4 phase transitions in the classical model are first order, we find strong evidence that 3 of the 5 quantum phase transitions in the s=1/2s=1/2 model are of continuous deconfined type

    Systematic Inclusion of High-Order Multi-Spin Correlations for the Spin-121\over2 XXZXXZ Models

    Full text link
    We apply the microscopic coupled-cluster method (CCM) to the spin-121\over2 XXZXXZ models on both the one-dimensional chain and the two-dimensional square lattice. Based on a systematic approximation scheme of the CCM developed by us previously, we carry out high-order {\it ab initio} calculations using computer-algebraic techniques. The ground-state properties of the models are obtained with high accuracy as functions of the anisotropy parameter. Furthermore, our CCM analysis enables us to study their quantum critical behavior in a systematic and unbiased manner.Comment: (to appear in PRL). 4 pages, ReVTeX, two figures available upon request. UMIST Preprint MA-000-000

    Influence of quantum fluctuations on zero-temperature phase transitions between collinear and noncollinear states in frustrated spin systems

    Full text link
    We study a square-lattice spin-half Heisenberg model where frustration is introduced by competing nearest-neighbor bonds of different signs. We discuss the influence of quantum fluctuations on the nature of the zero-temperature phase transitions from phases with collinear magnetic order at small frustration to phases with noncollinear spiral order at large frustration. We use the coupled cluster method (CCM) for high orders of approximation (up to LSUB6) and the exact diagonalization of finite systems (up to 32 sites) to calculate ground-state properties. The role of quantum fluctuations is examined by comparing the ferromagnetic-spiral and the antiferromagnetic-spiral transition within the same model. We find clear evidence that quantum fluctuations prefer collinear order and that they may favour a first order transition instead of a second order transition in case of no quantum fluctuations.Comment: 6 pages, 6 Postscipt figures; Accepted for publication in Phys. Rev.

    Optical alignment system Patent

    Get PDF
    Electro-optical/computer system for aligning large structural members and maintaining correct positio

    Quantum Phase Transitions in Spin Systems

    Full text link
    We discuss the influence of strong quantum fluctuations on zero-temperature phase transitions in a two-dimensional spin-half Heisenberg system. Using a high-order coupled cluster treatment, we study competition of magnetic bonds with and without frustration. We find that the coupled cluster treatment is able to describe the zero-temperature transitions in a qualitatively correct way, even if frustration is present and other methods such as quantum Monte Carlo fail.Comment: 8 pages, 12 Postscipt figures; Accepted for publication in World Scientifi

    Lightweight ducts fabricated from reinforced plastics and elastomers

    Get PDF
    Method has been developed for fabrication of lightweight ducts that are three times stronger than aluminum ducts. Method can be used to produce either flexible or rigid ducts
    • …
    corecore