12,025 research outputs found
Highly frustrated spin-lattice models of magnetism and their quantum phase transitions: A microscopic treatment via the coupled cluster method
We outline how the coupled cluster method of microscopic quantum many-body
theory can be utilized in practice to give highly accurate results for the
ground-state properties of a wide variety of highly frustrated and strongly
correlated spin-lattice models of interest in quantum magnetism, including
their quantum phase transitions. The method itself is described, and it is
shown how it may be implemented in practice to high orders in a systematically
improvable hierarchy of (so-called LSUB) approximations, by the use of
computer-algebraic techniques. The method works from the outset in the
thermodynamic limit of an infinite lattice at all levels of approximation, and
it is shown both how the "raw" LSUB results are themselves generally
excellent in the sense that they converge rapidly, and how they may accurately
be extrapolated to the exact limit, , of the truncation
index , which denotes the {\it only} approximation made. All of this is
illustrated via a specific application to a two-dimensional, frustrated,
spin-half -- model on a honeycomb lattice with
nearest-neighbor and next-nearest-neighbor interactions with exchange couplings
and , respectively, where both
interactions are of the same anisotropic type. We show how the method can
be used to determine the entire zero-temperature ground-state phase diagram of
the model in the range of the frustration parameter and
of the spin-space anisotropy parameter. In particular,
we identify a candidate quantum spin-liquid region in the phase space
A frustrated spin-1/2 Heisenberg antiferromagnet on a chevron-square lattice
The coupled cluster method (CCM) is used to study the zero-temperature
properties of a frustrated spin-half () -- Heisenberg
antiferromagnet (HAF) on a 2D chevron-square lattice. Each site on an
underlying square lattice has 4 nearest-neighbor exchange bonds of strength
and 2 next-nearest-neighbor (diagonal) bonds of strength , with each square plaquette having only one diagonal bond.
The diagonal bonds form a chevron pattern, and the model thus interpolates
smoothly between 2D HAFs on the square () and triangular () lattices,
and also extrapolates to disconnected 1D HAF chains (). The
classical () version of the model has N\'{e}el order for and a form of spiral order for , where
. For the model we use both these classical
states, as well as other collinear states not realized as classical
ground-state (GS) phases, as CCM reference states, on top of which the
multispin-flip configurations resulting from quantum fluctuations are
incorporated in a systematic truncation scheme, which we carry out to high
orders and extrapolate to the physical limit. We calculate the GS energy, GS
magnetic order parameter, and the susceptibilities of the states to various
forms of valence-bond crystalline (VBC) order, including plaquette and two
different dimer forms. We find that the model has two quantum
critical points, at and ,
with N\'{e}el order for , a form of spiral order for
that includes the correct three-sublattice
spin ordering for the triangular-lattice HAF at , and
parallel-dimer VBC order for
Spin-1/2 - Heisenberg model on a cross-striped square lattice
Using the coupled cluster method (CCM) we study the full (zero-temperature)
ground-state (GS) phase diagram of a spin-half () -
Heisenberg model on a cross-striped square lattice. Each site of the square
lattice has 4 nearest-neighbour exchange bonds of strength and 2
next-nearest-neighbour (diagonal) bonds of strength . The bonds
are arranged so that the basic square plaquettes in alternating columns have
either both or no bonds included. The classical () version of the model has 4 collinear phases when and
can take either sign. Three phases are antiferromagnetic (AFM), showing
so-called N\'{e}el, double N\'{e}el and double columnar striped order
respectively, while the fourth is ferromagnetic. For the quantum model
we use the 3 classical AFM phases as CCM reference states, on top of which the
multispin-flip configurations arising from quantum fluctuations are
incorporated in a systematic truncation hierarchy. Calculations of the
corresponding GS energy, magnetic order parameter and the susceptibilities of
the states to various forms of valence-bond crystalline (VBC) order are thus
carried out numerically to high orders of approximation and then extrapolated
to the (exact) physical limit. We find that the model has 5 phases,
which correspond to the four classical phases plus a new quantum phase with
plaquette VBC order. The positions of the 5 quantum critical points are
determined with high accuracy. While all 4 phase transitions in the classical
model are first order, we find strong evidence that 3 of the 5 quantum phase
transitions in the model are of continuous deconfined type
Systematic Inclusion of High-Order Multi-Spin Correlations for the Spin- Models
We apply the microscopic coupled-cluster method (CCM) to the spin-
models on both the one-dimensional chain and the two-dimensional square
lattice. Based on a systematic approximation scheme of the CCM developed by us
previously, we carry out high-order {\it ab initio} calculations using
computer-algebraic techniques. The ground-state properties of the models are
obtained with high accuracy as functions of the anisotropy parameter.
Furthermore, our CCM analysis enables us to study their quantum critical
behavior in a systematic and unbiased manner.Comment: (to appear in PRL). 4 pages, ReVTeX, two figures available upon
request. UMIST Preprint MA-000-000
Influence of quantum fluctuations on zero-temperature phase transitions between collinear and noncollinear states in frustrated spin systems
We study a square-lattice spin-half Heisenberg model where frustration is
introduced by competing nearest-neighbor bonds of different signs. We discuss
the influence of quantum fluctuations on the nature of the zero-temperature
phase transitions from phases with collinear magnetic order at small
frustration to phases with noncollinear spiral order at large frustration. We
use the coupled cluster method (CCM) for high orders of approximation (up to
LSUB6) and the exact diagonalization of finite systems (up to 32 sites) to
calculate ground-state properties. The role of quantum fluctuations is examined
by comparing the ferromagnetic-spiral and the antiferromagnetic-spiral
transition within the same model. We find clear evidence that quantum
fluctuations prefer collinear order and that they may favour a first order
transition instead of a second order transition in case of no quantum
fluctuations.Comment: 6 pages, 6 Postscipt figures; Accepted for publication in Phys. Rev.
Optical alignment system Patent
Electro-optical/computer system for aligning large structural members and maintaining correct positio
Quantum Phase Transitions in Spin Systems
We discuss the influence of strong quantum fluctuations on zero-temperature
phase transitions in a two-dimensional spin-half Heisenberg system. Using a
high-order coupled cluster treatment, we study competition of magnetic bonds
with and without frustration. We find that the coupled cluster treatment is
able to describe the zero-temperature transitions in a qualitatively correct
way, even if frustration is present and other methods such as quantum Monte
Carlo fail.Comment: 8 pages, 12 Postscipt figures; Accepted for publication in World
Scientifi
Lightweight ducts fabricated from reinforced plastics and elastomers
Method has been developed for fabrication of lightweight ducts that are three times stronger than aluminum ducts. Method can be used to produce either flexible or rigid ducts
- …