22,389 research outputs found

    Response of the Strongly-Driven Jaynes-Cummings Oscillator

    Get PDF
    We analyze the Jaynes-Cummings model of quantum optics, in the strong-dispersive regime. In the bad cavity limit and on timescales short compared to the atomic coherence time, the dynamics are those of a nonlinear oscillator. A steady-state non-perturbative semiclassical analysis exhibits a finite region of bistability delimited by a pair of critical points, unlike the usual dispersive bistability from a Kerr nonlinearity. This analysis explains our quantum trajectory simulations that show qualitative agreement with recent experiments from the field of circuit quantum electrodynamics.Comment: 5 pages, 3 figure

    Anomaly Detection for Science DMZs Using System Performance Data

    Get PDF
    Science DMZs are specialized networks that enable large-scale distributed scientific research, providing efficient and guaranteed performance while transferring large amounts of data at high rates. The high-speed performance of a Science DMZ is made viable via data transfer nodes (DTNs), therefore they are a critical point of failure. DTNs are usually monitored with network intrusion detection systems (NIDS). However, NIDS do not consider system performance data, such as network I/O interrupts and context switches, which can also be useful in revealing anomalous system performance potentially arising due to external network based attacks or insider attacks. In this paper, we demonstrate how system performance metrics can be applied towards securing a DTN in a Science DMZ network. Specifically, we evaluate the effectiveness of system performance data in detecting TCP-SYN flood attacks on a DTN using DBSCAN (a density-based clustering algorithm) for anomaly detection. Our results demonstrate that system interrupts and context switches can be used to successfully detect TCP-SYN floods, suggesting that system performance data could be effective in detecting a variety of attacks not easily detected through network monitoring alone

    Dynamic Poisson Factorization

    Full text link
    Models for recommender systems use latent factors to explain the preferences and behaviors of users with respect to a set of items (e.g., movies, books, academic papers). Typically, the latent factors are assumed to be static and, given these factors, the observed preferences and behaviors of users are assumed to be generated without order. These assumptions limit the explorative and predictive capabilities of such models, since users' interests and item popularity may evolve over time. To address this, we propose dPF, a dynamic matrix factorization model based on the recent Poisson factorization model for recommendations. dPF models the time evolving latent factors with a Kalman filter and the actions with Poisson distributions. We derive a scalable variational inference algorithm to infer the latent factors. Finally, we demonstrate dPF on 10 years of user click data from arXiv.org, one of the largest repository of scientific papers and a formidable source of information about the behavior of scientists. Empirically we show performance improvement over both static and, more recently proposed, dynamic recommendation models. We also provide a thorough exploration of the inferred posteriors over the latent variables.Comment: RecSys 201

    Improved Superconducting Qubit Readout by Qubit-Induced Nonlinearities

    Full text link
    In dispersive readout schemes, qubit-induced nonlinearity typically limits the measurement fidelity by reducing the signal-to-noise ratio (SNR) when the measurement power is increased. Contrary to seeing the nonlinearity as a problem, here we propose to use it to our advantage in a regime where it can increase the SNR. We show analytically that such a regime exists if the qubit has a many-level structure. We also show how this physics can account for the high-fidelity avalanchelike measurement recently reported by Reed {\it et al.} [arXiv:1004.4323v1].Comment: 4 pages, 5 figure

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (k≤mk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit m→∞m \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    Assessment and diagnosis of Developmental Language Disorder: The experiences of speech and language therapists

    Get PDF
    © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).Background: For many years research and practice have noted the impact of the heterogeneous nature of Developmental Language Disorder (also known as language impairment or specific language impairment) on diagnosis and assessment. Recent research suggests the disorder is not restricted to the language domain and against this background, the challenge for the practitioner is to provide accurate assessment and effective therapy. The language practitioner aims to support the child and their carers to achieve the best outcomes. However, little is known about the experiences of the language practitioner in the assessment process, in contrast to other childhood disorders, yet their expertise is central in the assessment and diagnosis of children with language disorder. Aims: This study aimed to provide a detailed qualitative description of the experiences of speech and language therapists involved in the assessment and diagnosis of children with Developmental Language Disorder. Methods & Procedures: The qualitative study included three focus groups to provide a credible and rich description of the experiences of speech and language therapists involved in the assessment of Developmental Language Disorder. The speech and language therapists who participated in the study were recruited from three NHS Trusts across the UK and all were directly involved in the assessment and diagnosis procedures. The lengths of practitioner experience ranged from 2 years to 38 years. The data was analysed using a thematic analysis in accordance with the principles set out by Braun & Clarke (2006). Outcomes & Results: The data showed a number of key themes concerning the experiences of speech and language therapists in assessing children with Developmental Language Disorder (DLD). These themes ranged from the participants’ experiences of the barriers to early referral, challenges for assessment and the concerns over continued future support. Conclusions & Implications: This study provides first-hand evidence from speech and language therapists in the assessment of children with Developmental Language Disorder, drawing together experiences from language practitioners from different regions. The findings provide insight to the barriers to referral, the potential variations in the assessment process, the role of practitioner expertise and the challenges faced them. The importance of early intervention, useful assessment tools and future support were expressed. Taken together, the results relate to some issues to be addressed on a practical level and a continuing need for initiatives to raise awareness of DLD in the public domain.Peer reviewe
    • …
    corecore