248 research outputs found
Effects of kelp canopy on underwater light climate and viability of brwon algal spores in Kongsfjorden (Spitsbergen)
Spores represent the most vulnerable life history stage of kelps. While UV-induced inhibition of spore germination has been readily documented, the impact of in situ underwater radiation below kelp canopies has been largely overlooked. We determined spectral composition and intensity of underwater radiation along a density gradient in an Alaria esculenta kelp forest at 3 m depth in Kongsfjorden, Svalbard. Accordingly, we set up a laboratory experiment simulating five different radiation conditions corresponding to irradiances under very dense to no canopy cover on a cloudless summer day. Spore responses (photosynthetic quantum yield, pigment and phlorotannin contents, swimming activity, and germination success) were determined after 4, 8, 16, and 24 h of exposure. In situ spectral radiation composition differed strongly from conditions applied in previous studies, which underestimated photosynthetically active radiation and overestimated UV-radiation
effects. Furthermore, spore solutions differed significantly in quantum yield, pigment, and phlorotannin contents upon release. Nevertheless, spores reacted dynamically to different radiation conditions and exposure times. Highest radiation (PAR 61.8 W m−2, 1.9 W m−2 UVA, 0.01 W m−2 UVB) caused photodamage after exposure for ≥ 8 h, while intermediate radiation led to photoinhibition. Lowest radiation (PAR 0.23 W m−2, 0 W m−2 UVA, 0 W m−2 UVB) caused inconsistent reactions. There was a reduction of absolute pigment content in all treatments, but reduction rates of photosynthetic pigments were significantly different between radiation treatments. Soluble phlorotannin content decreased under all conditions but was not significantly affected by experimental conditions. High radiation reduced swimming activity of spores, but experimental conditions had almost no effect on germination success. Consequently, it seems unlikely that in situ radiation conditions negatively affect spores in present and future radiation scenarios
Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis
The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO2 are discussed
Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels
Future atmospheric CO2 levels will most likely have complex consequences for marine organisms, particulary photosynthetic calcifying organisms. Corallina officinalis L. is an erect calcifying macroalga found in the inter- and subtidal regions of temperate rocky coastlines and provides important substrate and refugia for marine meiofauna. The main goal of the current study was to determine the physiological responses of C. officinalis to increased CO2 concentrations expected to occur within the next century and beyond. Our results show that growth and production of inorganic material decreased under high CO2 levels, while carbonic anhydrase activity was stimulated and negatively correlated to algal inorganic content. Photosynthetic efficiency based on oxygen evolution was also negatively affected by increased CO2. The results of this study indicate that C. officinalis may become less competitive under future CO2 levels, which could result in structural changes in future temperate intertidal communities
Seagrass biofilm communities at a naturally CO2-rich vent
Seagrass meadows are a crucial component of tropical marine reef ecosystems. Seagrass plants are colonized by a multitude of epiphytic organisms that contribute to broadening the ecological role of seagrasses. To better understand how environmental changes like ocean acidification might affect epiphytic assemblages, the microbial community composition of the epiphytic biofilm of Enhalus acroides was investigated at a natural CO2 vent in Papua New Guinea using molecular fingerprinting and next generation sequencing of 16S and 18S rRNA genes. Both bacterial and eukaryotic epiphytes formed distinct communities at the CO2-impacted site compared to the control site. This site-related CO2 effect was also visible in the succession pattern of microbial epiphytes. We further found an increased abundance of bacterial types associated with coral diseases at the CO2-impacted site (Fusobacteria, Thalassomonas) whereas eukaryotes such as certain crustose coralline algae commonly related to healthy reefs were less diverse. These trends in the epiphytic community of E. acroides suggest a potential role of seagrasses as vectors of coral pathogens and may support previous predictions of a decrease in reef health and prevalence of diseases under future ocean acidification scenarios
Differences by origin in methylome suggest eco-phenotypes in the kelp Saccharina latissima
publishedVersio
Light Intensity Modulates the Response of Two Antarctic Diatom Species to Ocean Acidification
It is largely unknown how rising atmospheric COconcentrations and changes in the upper mixed layer depth, with its subsequent effects on light availability will affect phytoplankton physiology in the Southern Ocean. Linking seasonal variations in the availability of CO2 and light to abundances and physiological traits of key phytoplankton species could aid to understand their abilities to acclimate to predicted future climatic
conditions. To investigate the combined effects of CO2 and light on two ecologically relevant Antarctic diatoms (Fragilariopsis curta and Odontella weisflogii) a matrix of three light intensities (LL = 20, ML = 200, HL = 500 µmol photons m-2 s−1) and three pCO2 levels (low = 180, ambient = 380, high = 1000 µatm) was applied assessing their effects on growth, particulate organic carbon (POC) fixation and photophysiology. Under
ambient pCO2, POC production rates were highest already at low light in Fragilariopsis, indicating saturation of photosynthesis, while in Odontella highest rates were only reached at medium irradiances. In both species ocean acidification did not stimulate, but rather inhibited, growth and POC production under low and medium light. This effect was, however, amended under high growth irradiances. Low pCO2 levels inhibited
growth and POC production in both species at low and medium light, and further decreased absolute electron transport rates under high light. Our results suggest that Southern Ocean diatoms were sensitive to changes in pCO2, showing species-specific responses, which were further modulated by light intensity. The two diatom species represent distinct ecotypes and revealed discrete physiological traits that matched their seasonal occurrence with the related physical conditions in Antarctic coastal waters
Mechanical Property Characterization of Mouse Zona Pellucida
Previous intracytoplasmic sperm injection (ICSI) studies have indicated significant variation in ICSI success rates among different species. In mouse ICSI, the zona pellucida (ZP) undergoes a hardening process at fertilization in order to prevent subsequent sperm from penetrating. There have been few studies investigating changes in the mechanical properties of mouse ZP post fertilization. To characterize mouse ZP mechanical properties and quantitate the mechanical property differences of the ZP before and after fertilization, a microelectromechanical systems-based multiaxis cellular force sensor has been developed. A microrobotic cell manipulation system employing the multiaxis cellular force sensor is used to conduct mouse ZP force sensing, establishing a quantitative relationship between applied forces and biomembrane structural deformations on both mouse oocytes and embryos. An analytical biomembrane elastic model is constructed to describe biomembrane mechanical properties. The characterized elastic modulus of embryos is 2.3 times that of oocytes, and the measured forces for puncturing embryo ZP are 1.7 times those for oocyte ZP. The technique and model presented in this paper can be applied to investigations into the mechanical properties of other biomembranes, such as the plasma membrane of oocytes or other cell types
Local differentiation in heat response of Laminaria digitata at the range edges
In recent years, kelp populations worldwide have faced decline and extirpation at their equatorward limits, while models predict a poleward shift of kelp ecosystems during climate change. To gain an understanding of local thermal adaptation and response plasticity in a forest-forming kelp species, we assessed populations of Laminaria digitata along its entire European distribution range for their capacity to withstand high temperature stress, and analysed population structure and diversity with microsatellite markers (n=12). We sampled wild meristematic L. digitata material (n=30) at six locations ranging from Kongsfjorden, Spitsbergen, to the southernmost distribution limit in Quiberon, France. In a heatwave experiment, we subjected samples from all locations to the same, sublethal temperature treatments (15–23°C for eight days including acclimation) and assessed growth, storage compounds, photosynthetic efficiency and pigment contents as response traits. Recovery was assessed following seven days at 15°C. Microsatellite genotyping revealed all sampled populations to be genetically distinct entities, underlying strong regional structuring between southern and northern clades. Genetic diversity was highest at the southern distribution limit in Quiberon and lowest in the geographically isolated population on the island of Helgoland in the North Sea. The physiological response of L. digitata to temperature was similar over the entire distribution range and did not reflect the mean temperature gradient along the latitudinal gradient. However, material from Spitsbergen and Helgoland presented subtle differentiations in their temperature responses, which reflect long-term local temperature histories at these sites. Finally, a heatwave reaching 23°C for five days led to a cessation of growth, from which none of the sampled populations recovered. Our results suggest that the heat stress response of L. digitata is generally stable across its distribution range, despite strong genetic structuring of the populations. Slight local differentiation occurred in populations from the most distinct thermal environments, but 23°C posed a growth limit for all populations. This implies that local adaptation in trailing edge populations of L. digitata might not alleviate detrimental effects of global warming
Susceptibility of Two Southern Ocean Phytoplankton Key Species to Iron Limitation and High Light
Although iron (Fe) availability primarily sets the rate of phytoplankton growth and primary and export production in the Southern Ocean, other environmental factors, most significantly light, also affect productivity. As light availability strongly influences phytoplankton species distribution in low Fe-waters, we investigated the combined effects of increasing light (20, 200, and 500 μmol photons m-2 s-1) in conjunction with different Fe (0.4 and 2 nM) availability on the physiology of two ecologically relevant phytoplankton species in the Southern Ocean, Chaetoceros debilis (Bacillariophyceae) and Phaeocystis antarctica (Haptophyceae). Fe-deficient cells of P. antarctica displayed similar high growth rates at all irradiances. In comparison, Fe-deplete C. debilis cells grew much slower under low and medium irradiance and were unable to grow at the highest irradiance. Interestingly, Fe-deficient C. debilis cells were better protected against short-term excessive irradiances than P. antarctica. This tolerance was apparently counteracted by strongly lowered growth and particulate organic carbon production rates of the diatom relative to the prymnesiophyte. Overall, our results show that P. antarctica was the more tolerant species to changes in the availability of Fe and light, providing it a competitive advantage under a high light regime in Fe-deficient waters as projected for the future
- …